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COMPUTER SIMULATION OF THE EVOLUTION OF FORAGING STRATEGIES:
APPLICATION TO THE ICHNOLOGICAL RECORD

Oyvind Hammer

ABSTRACT

The ichnological record can provide invaluable insight into the evolution of behaviour. Much of the
current work in so-called "artificial life" and artificial neural networks is applicable to ethological
paleobiology. Some preliminary experiments in this direction are presented here. A computer
generated community of detritus feeders was simulated with the individuals in each generation being
subjected to selection based on the success of their feeding strategies. Mutation and sexual
reproduction are also simulated, resulting in an evolutionary process that produces increasingly more
advanced simulated neural control systems. The resulting "virtual trace fossils" can be compared with
well-known, naturally occurring trace fossils and the fossil record of behavioural evolution. Though
this study is not intended as an exact replication of natural processes, such simulations may aid
theory formation, and can be a useful educational tool.
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INTRODUCTION

Trace fossils provide one of the few windows paleobiologists have on the evolution of animal
behaviour. Feeding trails of presumed metazoan origin are known from the Vendian or even earlier
(Fedonkin 1994), and the marine ichnological record of the Phanerozoic shows long-ranging trends of
increasing efficiency of horizontal deposit feeding (Seilacher 1977). In this paper, some preliminary
attempts at simulating the evolution of such behavioural patterns are described.

The role of computer simulation in ichnology, as in many biological subjects, can easily be
misunderstood. Any similarity between the morphology of natural and simulated traces must be
regarded as somewhat coincidental. One must take care not to overinterpret or otherwise assign too
much weight to such occurrences. In this study the intention is not to simulate every aspect of the
trace maker and its environment, which is, of course, impossible. Quantitative testing of behavioural
evolutionary hypotheses using computer experiments is therefore not a valid approach. Still,
computer simulation of the evolution of behavioural patterns can be a useful exercise because of the
general insights it may provide. The experiments described below indicate, for example, that complex
behaviour can arise from combinations of simple behavioural programs. Accordingly, any inference of
correlation between the morphological complexity of a trace and the inferred complexity of the
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underlying behavioural program must be regarded with caution. In addition, if phenomena like
adaptive radiations or punctuated equilibria arise in simulations with stable environments and without
geographical isolation, this may give rise to questions of general significance without providing much
evidence for or against the operation of particular natural processes. Finally, such simulations may
have educational value through the comparison of simulated results with the actual fossil record.

 

ARTIFICIAL LIFE

The methods of Artificial Life (AL) are now well known to computer scientists (see Langton 1995 for
an overview), but they have rarely been applied to paleontology. The key idea in current AL research
is to simulate some aspects of natural evolution in the computer. This is done for two main reasons:
(1) AL experiments can give insight into natural processes, and (2) AL techniques can be used for
practical purposes in engineering.

Besides setting up the basic mechanisms of evolution (mutation, reproduction and selection), the
most important element in the design of an AL system is the specification of the fitness criteria; that
is, the method for determining the viability of a newly grown individual. Some examples of such
criteria are: 1) the ability of simulated ants to find food, avoid obstacles and cooperate; 2) the ability of
competing individuals to fight for resources and to eat, but not be eaten. "Ecosystems" with several
trophic levels can emerge in such experiments (Yaeger 1994); 3) the ability of a computer virus to
penetrate computer security systems; and 4) the ability of a computer program to solve a given
problem. Note that an "individual" is not necessarily a simulated biological entity, but can just as well
be a simulated machine or computer program with properties that are to be optimized. "Artificial Life"
(AL) is becoming one of the most dynamic and promising fields of computer science, partially
displacing the position previously held by "Artificial Intelligence" (AI).

In a very early work in the field of AL, F. Papentin simulated a population of "worms", producing
feeding patterns that could be compared with natural trace fossils (Papentin 1973, Papentin and
Roder 1975, see also Raup and Seilacher 1969). Papentin modelled the organisms using six simple
ethological rules, and limited them to turning in 90 degree angles. However, these parameters could
mutate and evolve, thus changing the rules. With this approach, efficient foraging strategies like tight
meandering and spiraling emerged. The current study is a continuation of these experiments, but no
presuppositions about behaviour are made. Rather, the organisms are allowed to freely develop an
augmented artificial neural network as their control structure. Similar "foraging" simulations are in fact
important model problems in modern AL research (Miglino et al. 1996, Langton 1995), but
comparison with the trace fossil record has not been an important element. The "food" is generally
distributed in discrete, widely-spaced packages, which does not encourage the evolution of natural-
looking trace fossils.

 

EXPERIMENTAL SETUP

A population of simulated detritus feeders is living in a two-dimensional simulated world consisting of
both barren areas and areas rich in nutrients. The population size is limited to 400 individuals, to
avoid excessive computation time. The arena is a quadratic grid of 50 by 50 unit squares, giving both
acceptable resolution and computational efficiency. Three elliptical "food patches" are placed with
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their centers at pseudorandom positions (uniform distribution). The ellipses are generated by
stretching circles with unit radius by pseudorandom factors in the horizontal and vertical directions
separately, giving major and minor radii between 8 and 15 units. The food patches are given new
positions and scalings between each generation, to discourage the organisms from specializing to a
specific geography.

Moving at a constant speed of one unit distance per time step, the "creatures" pick up any food
present and leave behind a "mucus trail." All individuals are given a constant lifespan of 400 time
steps, and are selected for their feeding success during this interval. Ideally, they should then find
efficient ways to steer, avoiding barren areas and their own trail as much as possible. In each
generation, the 80 individuals with highest fitness values (number of food units eaten) are
automatically selected for reproduction. Among these, reproductive success is further controlled
statistically from their fitness, by setting the probability of selecting a parent to its normalized fitness
value. Reproduction is controlled by the program to keep the population size constant. Technically,
this is done by keeping a "slot" for each of the possible 400 organisms. When an organism is
removed because of low fitness value, its slot becomes vacant. In the next generation, all vacant slots
are filled with new organisms. Reproduction involves both pseudorandom mutation and exchange of
genetic material between the two parents (see below).

The genotype and phenotype are undistinguishable in this system, as they consist of the same data
structure. A network of "modules" are connected together to form a control system in the form of a
directed graph, possibly with feedback loops. This network can be compared with a normal artificial
neural network, but includes additional module types that have little biological justification in the hope
that this will lead to complex strategies after few generations. A total of 25 rather arbitrarily chosen
module types are available, including sensors, summers, multipliers, nonlinear transfer functions,
memory, oscillators, etc. (Table 1). Each input has an associated weight factor. A single output
controls the magnitude and direction of turning, much like the driving wheel in a car. The module
types were mostly taken from Sims 1994, who used a similar method to successfully evolve control
structures for "swimming" and "jumping" in simulated organisms.

Mutation involves pseudorandom changes in the input weightings in the modules, addition and
removal of modules, and addition and removal of communication links ("axons") between modules.

Parts of the network can be interchanged between two individuals during mating in a process that can
be compared with chromosomal crossover. This is accomplished by arranging the modules of the
parents in two linear rows, and combining segments of the rows into a new row representing the child
(Figures 1, 2, and 3). The segments are chosen by copying modules from one row and switching to
the other row with a probability of 0.12 (value arbitrarily chosen) for each traversed module. If the
parents are dissimilar, such crossover will normally produce a highly dysfunctional control structure,
because modules are integrated into a functional whole and are not likely to function in another
context. Such an effect might conceivably lead to the formation of "species," but this has not been
investigated in the current experiments.
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AN EXAMPLE CONTROL NETWORK

The evolved control networks are accessible for study, but deciphering how they actually work is
more difficult. Compared with computer programs written by human programmers, evolved algorithms
are less likely to refer to the resulting behaviour in a modular, linear and one-to-one way. What we
believe we observe as one distinct ethological "rule," may in fact be an emergent product of a large
nonlinear network with feedbacks and memory. Conversely, a small subnetwork may be responsible
for several different behaviours in different contexts. Consequently, the correlation between
complexities of the behavioural program and the trace it produces is not necessarily strong.

As an example, consider a network that was observed in one simulation run (Figure 4). One of the
modules in the inventory is a food sensor that gives information about the presence of food in a given
direction ("FSENSOR" in Table 1). The creatures were expected to acquire a set of such sensors, set
up to sense the state of the environment in different directions (e.g., to the left, to the front and to the
right). However, there is another module called a "sawtooth oscillator," that gives value increasing
linearly to a given level and then decreasing to zero again ("SAW" in Table 1). This creature had
evolved a network where such an oscillator was coupled to the direction parameter of a single sensor,
creating a sweeping sensor that could report the environmental state in all directions successively,
much like a radar.This may be an obvious idea in hindsight, but nevertheless a clever solution that
the programmer did not foresee. Further, this organism walked straight forward until a food patch was
encountered, and then turned to a meandering behaviour. When the outer limit of the patch was
reached, the organism switched to walking with constant curvature, which might bring it back into the
patch. If it did not return to the patch, the curvature was exponentially decreased towards straight
walking again. This searching phase could bring the organism in contact with another patch where
the meandering resumed. All this must be regarded as rather elaborate behaviour given the small
size of the control network.

RESULTS

The simulator, as perhaps evolution itself, can be seen as an iterative optimizing system for a
nonlinear function (fitness). As is well known from such systems (e.g., Miglino et al. 1996), the
program can get stuck on a local maximum for a long time before a new "invention" breaks through
the selection process (Figure 5, Figure 6, Figure 7). Therefore, there are long periods of little activity
which we can refer to as stasis, though of course without implying that the phenomenon has exactly
the same reasons as in nature.

Most often, a flurry of activity occurred in the first few generations, causing an "adaptive radiation"
with many extravagant experiments. Soon however, most of the forms were decimated as the few
most efficient grazers filled the living space. One of the most dramatic events in these simulations
was when the first creature discovered an advantageous use of sensors, representing a key
innovation. The "genes" of this individual quickly spread and disrupted the existing blind (but often
well diversified) communities. In the run shown in Figure 6 it can be seen that a significant
subpopulation had acquired a food sensor some time before it was actually connected in a highly
useful way. The inclusion of a sensor element was therefore probably initially a character with limited
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adaptive value, but represented a "pre-adaptation" for an important breakthrough.

Some of the patterns observed in the fossil record could be seen in the simulations, in particular the
general trend towards more efficient grazing patterns (Seilacher 1977). From unsystematic scribbling,
the creatures evolved towards meandering, spiralling and edge following. However, some natural
patterns have not arisen in the simulations. In particular, tight, labyrinthic meanders (Helminthoides)
never evolved. This may be due to the way the environment was simulated, or perhaps the
simulations were not allowed to run for a sufficient number of generations (Figure 8 and Figure 9).

Formal statistics and comparison of simulation results are not given here, for several reasons. Since
a single run can take an hour or more of computing time large numbers of simulations are not
presently practical. Secondly, different runs with slightly different parameters can give very different
results (compare Figure 6 and Figure 7), perhaps showing the importance of "historical contingency"
(Gould 1989) in these simulations. The large variation in results means that comparing different
parameters would necessitate very large numbers of simulations to provide meaningful statistics.
Thirdly, meaningful formal measures on the morphology of traces are not known to the author.
Finally, and most importantly, there is a danger of over-interpreting these extremely simplified
simulations.

 

USING STANDARD NEURAL NETWORKS

A valid objection to the experiments presented here is that many of the module types are rather
artificial from a biological point of view. Sinus oscillators and square root functions hardly exist as
discrete entities in real neural systems. Considering the success in recent years of mimicking real
neural networks in computer simulations (Haykin 1994), simulations were done where the inventory of
modules was limited to sensors and a simulated neuron. Such a neuron consisted of a number of
inputs (maximally three) that were weighted and summed together, and a nonlinear threshold transfer
function:

The weights wi and the transfer function parameter k were subject to mutation, but were fixed during
the lifespan of a single organism. No learning could therefore occur as all values were inherited. The
topology of the network was freely evolvable as before, and networks with feedback loops would
allow memory mechanisms and oscillators to develop.

The exclusion of non-biological modules did not stop the evolution of some complex and efficient
strategies, as shown in Figure 10.

A complete program for UNIX computers (only tested on SGI) is given here. Listings of the particular
programs with their many parameters that were used to produce the examples in this paper are
available via FTP at ftp://www.notam.uio.no/pub/SNIL/.
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FUTURE WORK

Many experiments can be carried out in AL systems like this. For example, what happens if the
environment is suddenly changed? How do the "genes" spread? Geography can also be introduced,
allowing experiments in migration, allopatric speciation, etc. Three-dimensional burrowing can be
simulated to see if traces like Zoophycos and Chondrites will develop. The evolution of trace fossils
should be a useful model problem in evolutionary biology and AL, because of the simple fitness
criteria, the relatively simple neural control systems of the organisms involved and the availability of a
fossil record for comparison.
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TABLE 1.

Module name Inputs Function

SUM a,b a+b

PRODUCT a,b a*b

DIVIDE a,b a/b

SUM_THRESHOLD a,b,c max(a+b,c)

GREATER_THAN a,b a>b (0 or 1)

SIGN_OF a sign(a) (-1 or 1)

MIN a,b min(a,b)

MAX a,b max(a,b)

ABS a |a|

IF a a<>0 (0 or 1)

INTERPOLATE a,b (a+b)/2

SIN a sin(a)

COS a cos(a)

ATAN a atan(a)

LOG a ln(a)
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EXPT a exp(a)

SIGMOID a 1/(1+exp(-a))

INTEGRATE a Sum of earlier inputs

DIFFERENTIATE a a-(previous a)

SMOOTH a (a+(previous a))/2

MEMORY a,b a is input to FIFO queue, b is output pointer

WAVE a,b sin(a*t)+b

SAW a,b (a*t) modulo b

FSENSOR a food in direction a, 1 unit away gives 1, two units away
gives 0.25, else 0

TSENSOR a cell in direction a, visited earlier, 1 unit away gives 1, two
units away gives 0.25, else 0
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Figure 1. These two control structures can be "mated" using "chromosomal
crossover" as shown in Figure 2 and Figure 3.



9

 

Figure 2. The modules of the control structures shown in Figure 1 are
arranged sequentially in arbitrary order; this order is part of the genome
however and is kept from generation to generation. Chromosomal crossover
is simulated by combining these arrays. In this case, the genome is read by
starting at the beginning of the chromosome of the first organism. After the
yellow module, the reading frame is shifted to the other chromosome by a
pseudorandom trigger. The resulting chromosome is shown in Figure 3.
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Figure 3. The result of the crossover operation shown in Figure 2. The
origins of the communication links ("axons") are kept in place, regardless of
any new context.
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Figure 4. An example of an efficient control structure consisting of a
sweeping sensor controlling a sinus oscillator. The oscillator output is fed
back into the offset input, causing exponential decay when the oscillator is
switched off. This leads to meandering while inside a food patch, and
progressively straighter walking while outside.
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Figure 5. Mean fitness as a function of time (yellow curve), and the
perceptual number of organisms with food sensors (purple curve) in another
experiment. An "adaptive radiation" from generation 0 to generation 10 is
followed by a period of "stasis" from generation 10 to 50. Around generation
50, a period of "gradualistic" evolution sets in, where the use of food sensors
is fine-tuned. Note that the number of sensor-containing organisms starts to
increase long before this makes any visible impact on mean fitness.
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Figure 6. Mean fitness (yellow curve) in a run using pure neural networks
with only sensors and artificial neurons. Note the punctuation around
generation 370, which is linked to the change from edge following to a
meandering strategy (Figure 10). The purple curve shows the number of
organisms with food sensors, in percent.
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Figure 7. Another run using the same parameters as in the run shown in
Figure 6, but with another starting point for the pseudorandom number
generator. The result is similar, but the punctuation occurred much earlier,
demonstrating the instability of the simulations.
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Figure 8. The evolution of a strategy involving wide meandering while inside the food patches,
switching to a "search" phase while outside. Smaller turning radius is common, but really tight
meandering has never emerged in the experiments. All figures in this paper show the entire
simulation space of 50 by 50 unit squares.
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Figure 9. The evolution of an "edge looping" strategy. Note that just one arbitrary organism from
each generation is shown. The organism in generation 5 has been "lucky"; the very tight scribbling
would not be efficient with separate, small food patches since the interior of the patch is not
utilized. The organism in generation 15 shows a phobotactic behaviour, avoiding its own track,
seemingly without being able to sense the presence of food. This behaviour was not seen again
later in the simulation, becoming lost in the competition with the edge loopers, Fitness values for
the sample organisms shown are 47 (generation 0), 187 (generation 5), 97 (generation 15), 162
(generation 55), 189 (generation 70) and 187 (generation 80).
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Figure 10 A-C. Sample trails from generation 320, 390 and 770 in the
simulation shown in Figure 6. Note the edge following strategy (but with
frequent crossings) before the punctuation around generation 370, replaced
by small meandering which is perfected from generation 390 to generation
770.

Figure 10A.
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Figure 10B.
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Figure 10C.

 


