Articles

Print Email

Rare leaf fossils of Monimiaceae and Atherospermataceae (Laurales) from Eocene Patagonian rainforests and their biogeographic significance

Cassandra L. Knight and Peter Wilf

Plain Language Abstract

This study focuses on two fossil-leaf species of flowering plants found at the Eocene fossil localities Laguna del Hunco (LH, ca. 52.2 Ma) and Río Pichileufú (RP, ca. 47.7 Ma) in Patagonia, Argentina. These sites yield some of the most diverse assemblages of fossil plants known and have been the focus of many paleontological studies. Historically, these paleofloras were thought to include several fossil plant species with affinities to living forests in southern South America. However, many of the taxa have recently been reclassified into genera with modern-day ranges in Australasian rainforests. Thus, the fossil floras may not include many connections to living Patagonian floras and instead support links to trans-Antarctic Gondwanan floras of the warm Eocene.

The two fossil species studied here, based on characteristic leaf morphology, show affinity to the magnoliid order Laurales of the basal angiosperms. Laurales are a diverse order with many genera that today show distinctly Gondwanan, often disjunct Southern Hemisphere distributions, making them of key interest for understanding southern biogeography. However, Laurales are well represented in the fossil record by only one of its families, Lauraceae. Here, we report new fossil evidence of Laurales from the families Atherospermataceae and Monimiaceae. One fossil species of the family Atherospermataceae, Laurelia guinazui, was previously described by Berry (1935) from RP, but new specimens from LH and RP with better preservation prompted our re-evaluation. The second fossil leaf species, of the family Monimiaceae, is new and known from a single specimen only. The purpose of this study is similar to that of other work evaluating certain components of the floras: to identify the fossil species to at least family level, to determine their probable closest living relatives, and to use both the fossil occurrences and the living ranges of relatives to improve understanding of paleobiogeography and ancient ecology.

Our results suggest that the most similar living relatives of Laurelia guinazui, reassigned here to Atherospermophyllum guinazui (Berry) comb. nov. (Atherospermataceae), and the new fossil species, Monimiophyllum callidentatum sp. nov. (Monimiaceae), live only in Australasia today. These records of Atherospermataceae and Monimiaceae are important because they are some of the only fossil occurrences of the two families from South America known to date. The affinities of these two Patagonian fossil species with living Australian taxa further support the recent evidence that the Patagonian fossil floras show strongest connection to living Australasian rainforest floras, and that significant biotic exchange was occurring between South America and Australasia, via Antarctica, before the final separation of South America and Antarctica during the middle-late Eocene. Based on fossil leaf traits and the ecology of the living relatives, our results also reveal a novel understory component of basal angiosperms on the Eocene landscape.

Resumen en Español

Hojas fósiles de Monimiaceae y Atherospermataceae (Laurales) de los bosques húmedos del Eoceno de Patagonia y su significado biogeográfico

Laguna del Hunco (~52.2 Ma) y Río Pichileufú (~ 47.7 Ma) son dos localidades del Eoceno de Patagonia (Argentina) que han proporcionado algunas de las floras fósiles más diversas de los bosques húmedos, dominados por angiospermas, de Gondwana. En este trabajo nos centramos en el estudio de hojas fósiles dentadas correspondientes a las familias Atherospermataceae y Monimiaceae (Laurales), que actualmente muestran una amplia, y a menudo disyunta, distribución en el hemisferio sur y que presentan un particular interés para la biogeografía de Gondwana. Damos a conocer 24 nuevos ejemplares de Laurelia guinazui Berry 1935 (Atherospermataceae), especie de la que proponemos su reasignación a Atherospermophyllum gen. nov. y A. guinazui (Berry) comb. nov. Se creía que esta especie era un elemento sudamericano de las floras del Eoceno, pero hemos descubierto que muestra mayor afinidad con los géneros australianos actuales, estrechamente relacionados, Daphnandra y Doryphora que con Laureliopsis (Sudamérica) y Laurelia (Sudamérica y Nueva Zelanda). La familia Monimiaceae está representada por un único ejemplar, procedente de Laguna del Hunco, y que atribuimos a Monimiophyllum callidentatum sp. nov. Este fósil muestra una gran semejanza con Wilkiea, un género descendiente actual, en clara contradicción con los análisis moleculares que sitúan la divergencia del clado Wilkiea en Australasia hace 16-38 Ma. Por tanto, el linaje Wilkiea podría ser más antiguo y tener una historia biogeográfica más dilatada a lo largo de Gondwana. Nuestros hallazgos mejoran significativamente el escaso registro fósil de Atherospermataceae y Monimiaceae. Las formas fósiles se hallan a una gran distancia actual de sus parientes vivos más cercanos y, especialmente, con géneros similares asociados, lo que aumenta los lazos de las floras eocenas de Patagonia con Australasia y debilita aún más sus señales de supervivencia en los bosques actuales de Sudamérica.

Palabras clave: Patagonia; Eoceno; Laurales; biogeografía; nuevo género; nueva especie

Traducción: Miguel Company

Résumé en Français

De rares fossiles de feuilles de Monimiaceae et Atherospermataceae (Laurales) des forets tropicales éocènes de Patagonie et leur importance biogéographique

Deux site fossiles éocènes de Patagonie, Argentine, Laguna del Hunco (ca. 52,2 Ma) et Río Pichileufú (ca. 47,7 Ma), ont donné parmi les flores fossiles les plus diversifiés connues à ce jour, représentant des forêts tropicales gondwaniennes dominées par les angiospermes. Nous mettons l'accent sur de rares fossiles de feuilles dentées appartenant aux familles Atherospermataceae et Monimiaceae (Laurales), qui montrent actuellement une large distribution au sud, souvent discontinue, et présentent un grand intérêt pour la biogéographie gondwanienne. Pour Laurelia guinazui Berry 1935 (Atherospermataceae), nous présentons 24 nouveaux spécimens et proposons la réaffectation à Atherospermophyllum gen. nov. et A. guinazui (Berry) comb. nov. Cette espèce était considérée comme un élément sud-américain des flores Eocènes, mais nous montrons une plus forte ressemblance avec les genres actuels australiens d'affinité proche Daphnandra et Doryphora plutôt qu'avec Laureliopsis (Amérique du Sud) et Laurelia (Amérique du Sud et Nouvelle Zélande). Les Monimiaceae sont représentées par un seul spécimen fossile de Laguna del Hunco, attribué ici à Monimiophyllum callidentatum sp. nov. Ce fossiles montrent de grandes similarités avec Wilkiea, un genre dérivé actuel d'Australie, en contradiction apparente avec les analyses moléculaires plaçant la divergence du clade Wilkiea en Australasie vers 16-38 Ma. En conséquence, la lignée Wilkiea pourrait être plus ancienne et avoir une histoire biogéographique plus large à l'échelle du Gondwana. Nos découvertes améliorent significativement le registre fossile pauvre pour les Atherospermataceae et les Monimiaceae. Les fossiles ont été trouvés à bonne distance de leur plus proches parents actuels et, remarquablement, avec des genres associés similaires, augmentant les liens entre les flores de l'Eocène de Patagonie et d'Australasie et affaiblissant d'autant leur signal de survie dans les forêts actuelles d'Amérique du Sud.

Mots clés : Patagonie; Eocène; Laurales; biogéographie; nouveau genre; nouvelles espèces

Translator: Olivier Maridet

Deutsche Zusammenfassung

In progress

Translator: Eva Gebauer

Arabic

386 arab

Translator: Ashraf M.T. Elewa

 

 

FIGURE 1. Ranges of extant genera in 1 - Atherospermataceae and 2 - Monimiaceae. Extant ranges are indicated by blue fill, and red stars indicate the early Eocene Laguna del Hunco and middle Eocene Río Pichileufú fossil localities, from which Atherospermophyllum guinazui (Berry) comb. nov. and Monimiophyllum callidentatum sp. nov. are here reported. The living ranges of Laurelia-Laureliopsis in South America are close to but do not include the fossil sites, which are located slightly to their east.

 fig 1

FIGURE 2. Species character scores for Atherospermataceae, including the fossil Atherospermophyllum guinazui, comb. nov., plotted against a molecular phylogeny for the family (redrawn from Renner et al., 2000). Characters as numbered across the top of the plot correspond to Appendix 2. Circles indicate discrete (presence/absence) characters, white = absent, black = present, half-filled = both absent and present in the species. Squares indicate continuous characters, filled when the scored range of the living species includes the range scored for A. guinazui. Based on these scores, percent similarity of each living species to the fossil species A. guinazui is plotted in the bar graph at right.

 fig 2

FIGURE 3. Species character scores for Monimiaceae, including the fossil Monimiophyllum callidentatum, sp. nov., plotted against a molecular phylogeny for the family (redrawn from Renner et al., 2010), including unscored taxa. Summary scores for additional taxa (not analyzed by Renner et al., 2010) shown in Table 5, Appendix 4, and Appendix 5. Characters numbered across the top of the plot correspond to Appendix 3. Circles indicate discrete (presence/absence) characters, white = absent, black = present, half-filled = both absent and present in the species. Squares indicate continuous characters, filled when the character range of the living species includes the range exhibited by M. callidentatum. Based on these scores, percent similarity of each living species to the fossil species M. callidentatum is plotted in the bar graph at right. Black bars = toothed species, white bars = untoothed species.

 fig 3

FIGURE 4. Atherospermophyllum guinazui (Berry), comb. nov. 1 - Lectotype, USNM 40403a, from Río Pichileufú (RP); 2 - camera lucida drawing of USNM 40403a, showing venation and tooth details; 3 - USNM 40403b (syntype); 4 - camera lucida drawing of USNM 40403b. Selected new specimens of A. guinazui: 5 - MPEF-Pb 5639 (Laguna del Hunco, LH); 6 - MPEF-Pb 5650 (LH); 7 - MPEF-Pb 5640 (LH); 8 - BAR 4732 (RP); 9 - MPEF-Pb 5648 (LH); 10 - MPEF-Pb 5636 (LH). All scale bars are 1 cm. Also visible on USNM 40403a is extensive insect hole and margin feeding and skeletonization.

 fig 4

FIGURE 5. Atherospermophyllum guinazui (Berry), comb. nov., venation (1, 3, 5) and tooth (2, 4, 6) details. 1 and 2 - USNM 40403a (lectotype, Río Pichileufú); 3 and 4 - MPEF-Pb 5639 (Laguna del Hunco, LH); and 5 and 6 - MPEF-Pb 5641 (LH). Scale bar is 1 cm for 1, 3, and 5, and 1 mm for 2, 4, and 6.

 fig 5

FIGURE 6. Atherospermophyllum guinazui (Berry), comb. nov., exemplars and visual comparisons to living Atherospermataceae species (Figure 2, Table 4). The left column (1-3) shows fossil specimens (Figure 4), and the four other columns, left to right, each show herbarium specimens of Daphnandra apatela (4-6), Doryphora sassafras (7-9), Laureliopsis philippiana (10-12), and Laurelia sempervirens (13-15). Fossil specimens: 1 – MPEF-Pb 5639 (LH); 2 – USNM 40403a (lectotype, RP); and 3 – MPEF-Pb 5650 (LH). Examples of living Daphnandra apatela: 4 – NSW 67890, C. Moore 167, Richmond River, NSW, Australia; 5 –CANB 128677, R. Schodde 3366, Sarabah Range, Qld., Australia; and 6 – NSW 102541, R. Schodde 5123, Doyle's River State Forest, NSW, Australia. Doryphora sassafras: 7 – NSW 67954, F. M. Bailey, NSW, Australia; 8 – NSW 69329, R. Schodde 3199, Williams River, NSW, Australia; and 9 – CANB 00467700, P. Martensz 222, Mt. Keira, NSW, Australia. Laureliopsis philippiana: 10 – NSW 67915, A. Castellanos, Lago Menéndez, Argentina; 11 – NSW s/n, B.J. Wallace 239/85; and 12 – NSW 67915, A. Castellanos, Lago Menéndez, Argentina. Laurelia sempervirens: 13 – GH s/n, T. Plowman 2618, Isla Tenglo, Chile; 14 – GH s/n, A.L. Cabrera 6026, Laguna Frias, Argentina; and 15 – NSW 618673, J. Allen s/n, cultivated, Mt. Tomah, NSW, Australia. Scale bars are 1 cm.

 fig 6

FIGURE 7. Monimiophyllum callidentatum, sp. nov., holotype, MPEF-Pb 5630 (Laguna del Hunco), part and counterpart (1 and 2), and details of the toothed margin (3) and the base (4). Note the deep midvein impression visible on the counterpart. Scale bar is 1 cm for 1 and 2, and 1 mm for 3 and 4.

 fig 7

FIGURE 8. Monimiophyllum callidentatum, sp. nov., holotype and visual comparisons to living Monimiaceae species (Figure 3, Table 5). The left-most image shows the fossil specimen (Figure 7; part), and all other images show herbarium specimens. 1 – M. callidentatum holotype from Laguna del Hunco, MPEF-Pb 5630; 2 – Wilkiea hugeliana, C.L. Knight 22, Gibbergunya Range Road near Bigbox Road, Border Ranges N.P., NSW, Australia; 3 – Kairoa suberosa, CANB 204095, R. Schodde 5412, Mt. Moiba, Papua, Indonesia; 4 – Austromatthaea elegans, CANB 128486, R. Schodde 3233, Davies Creek Forestry Reserve, Queensland, Australia; 5 – Hedycarya cupulata, NSW s/n, G. McPherson 2426, Thy River Basin, New Caledonia; 6 – Wilkiea rigidifolia, CANB 173624, R. Pullen 7231, Western District, Papua New Guinea; 7 – Macropeplus ligustrinus, P 02005903, R. M. Harley 25112, Minas Gerais, Brazil (downloaded image, used with permission). Scale bars are 1 cm.

fig 8

 

APPENDIX 1

Leaf Character Definitions

Unless defined separately below, terminology for leaf scoring (Appendix 3, Appendix 5) followed Ellis et al. (2009).

Midvein thickened at base: qualitative feature. The midvein is considered basally thickened if the midvein in the basal third of the leaf, especially near the insertion point of the petiole, is noticeably thicker than the midvein in the middle and apical portion of the leaf. (Appendix 2, Character 9; Appendix 4, Character 7)

Ratio of midvein w:2° w: the width of the midvein divided by the width of a secondary vein. The width of the secondary vein is measured proximal to the midvein and perpendicular to the secondary vein course (Appendix 2, Character 11; Appendix 4, Character 8).

Basal secondaries acute: This is a measure of acuteness to the midvein of the basalmost pair of secondary veins is, relative to the superjacent pair of secondary veins. The measurement is the difference between the angle of the basalmost pair of secondary veins to the midvein, and the angle of the second pair of secondary veins to the midvein. When the angle measured is equal to zero, the basal secondary veins are not acute, and increasing angle measurements indicate increasing acuteness (Appendix 2, Character 12; Appendix 4, Character 10).

Proximity of secondary loop to margin: Measured as a percentage. The distance from the outermost point of a secondary vein (typically secondary veins in the medial portion of the blade are measured) divided by the total distance between the midvein and the margin, then multiplied by 100. Both lengths are measured along the same line, which is perpendicular to the midvein (Appendix 2, Character 13; Appendix 4, Character 12).

Secondary loop shape: Qualitative feature. The secondary loop shape is scored 'even' if the superjacent and subjacent secondary veins in a secondary loop maintain a nearly constant distance from each other, until they loop near the blade margin. The secondary loop shape is scored 'cone' if the loop width decreases noticeably from the midvein to the blade margin (Appendix 2, Character 14; Appendix 4, Character 13).

Ratio of 2° loop h:w: The maximum height of a secondary loop (measured from the intersection of a secondary with the midvein, to the apex of the secondary loop) divided by the maximum intercostal width of the secondary loop (measured between the intersection of the superjacent secondary vein and the midvein, to where a perpendicular line intersects the subjacent secondary) (Appendix 2, Character 15; Appendix 4, Character 14).

Tooth size: Measured as a percentage. Tooth size is the distance between the tooth sinus and the tooth apex, divided by the total distance of the tooth apex from the midvein, then multiplied by 100. Both lengths are measured along a single line, which is perpendicular to the midvein. The points at which the tooth apex and sinus occur are projected perpendicularly to this single line, and the length between these projected points is measured to calculate the percentage (Appendix 2, Character 24; Appendix 4, Character 22).

APPENDIX 2

Characters used to score the fossil Atherospermophyllum guinazui comb. nov. and living Atherospermataceae, and explanation of coding. The character numbers given in this Appendix correspond to the first column in the scoring matrix (Appendix 3, below).

Character#

Character name

Coding

1 laminar length:width ratio Range
2 leaf length range (mm)
3 petiole swollen 0=no, 1=yes
4 base shape convex 0=no, 1=yes
5 apex shape straight 0=no, 1=yes
6 apex shape convex 0=no, 1=yes
7 apex shape acuminate 0=no, 1=yes
8 apex angle obtuse 0=no, 1=yes
9 midvein thickened at base 0=no, 1=yes
10 ratio of midvein w:2° w Range
11 secondary attachment to midvein 0=excurrent, 1=decurrent
12 basal secondaries acute max. angle (degrees)
13 proximity of secondary loop to margin range (%)
14 secondary loop shape 0=even, 1=cone
15 ratio of 2° loop h:w Number
16 number of 2° loops Number
17 intersecondaries present 0=no, 1=yes
18 exterior tertiary loops 0=weak, 1=strong
19 exterior tertiary loop size/spacing 0=irregular, 1=regular
20 margin type 0=entire, 1=toothed
21 teeth per cm Number
22 number of tooth orders Number
23 second order teeth compound 0=no, 1=yes
24 tooth size range (%)
25 teeth occur in basal quarter of blade 0=no, 1=yes
26 principal vein branches from outermost tertiary 0=no, 1=yes
27 tooth accessory veins 0=none, 1=conjunctal
28 tooth shape cc/st 0=no, 1=yes
29 tooth shape cc/rt 0=no, 1=yes
30 tooth shape cc/fl 0=no, 1=yes

 

 APPENDIX 3

Atherospermataceae Character Matrix

Character data for the fossil Atherospermophyllum guinazui comb. nov. and living Atherospermataceae. Scores for living species are bold where they match or fully capture the fossil species' score or range.

 
 

Atherospermophyllum guinazui

Laurelia novae-zelandiae

Laureliopsis philippiana

Laurelia sempervirens

Atherosperma moschatum

Nemuaron vieillardii

Dryadodaphne novoguineensis

Dryadodaphne trachyphloia

1

2.17-3.29

1.9-2

1.62-3.3

2.7-3.5

2.8-3

1.9-3

2.9-3

2.6-3.7

2

50-122

35-76

52-109

53-114

62-80

41-71

74-97

48-170

3

1

1

1

1

1

1

1

1

4

0,1

0

0

0

1

0

1

1

5

1

0

1

1

1

0

0

0

6

0

1

1

1

0

1

0

0

7

0

1

0

0

0

1

1

1

8

0

1

1

0

0

1

0

0

9

1

1

1

1

0

1

1

1

10

2.75-6.43

1.88-4.24

1.74-3.04

3.04-5.42

2.23-3.69

3.25-6.21

5.35-5.83

2.12-5.56

11

1

1

1

1

0

1

1

1

12

18

5

10

10

6

12

18

12

13

4-24

18-32

24-27

10-28

9-13

17-20

17-27

14-26

14

0,1

0

0

0

0

0

0

0

15

1.47-4.33

2.50-4.33

3.60-5.40

4.00-5.33

3.50-5.00

2.00-4.50

1.86-3.20

2.00-2.88

16

8-16

10-13

12-15

10-16

10-14

11-15

11-17

12-16

17

0,1

0

1

1

0

0

0

1

18

0,1

0

1

1

n/a

n/a

0 (?)

1

19

0,1

0

1

1

n/a

n/a

0

0

20

1

1

1

1

0,1

1

1

1

21

2-6

3-5

2-4

2-4

1-3

2-6

1-3

1-3

22

1,2

2

2

2

2

2

1

1

23

n/a,1

1

1

1

1

1

n/a

n/a

24

3.63-11.93

6.43-10.34

5.27-14.87

5.78-7.08

7.35-16.13

6.72-7.48

4.19-6.07

2.59-5.73

25

1

1

0,1

0,1

0,1

0,1

0,1

0

26

1

1

1

1

0

0

1

1

27

1

0

1

1

1

0

1

1

28

0,1

0

1

0

1

0

0

0

29

0,1

1

1

1

0

1

1

1

30

0,1

0

0

0

1

0

0

0

                 
 

Number of matches

7

11

11

9

7

10

9

 

Characters scored

27

27

27

27

27

27

27

 

% similarity

25.93

40.74

40.74

33.33

25.93

37.04

33.33

Appendix 3 (continued).

 
 

Daphnandra micrantha

Daphnandra repandula

Daphnandra apatela

Doryphora aromatica

Doryphora sassafras

 

1

2.7-3

3-3.7

2.66-4.4

2.2-3.1

2.5-3.92

 

2

65-156

88-159

70-123

58-139

36-124

 

3

1

0

0,1

1

1

 

4

1

1

0,1

0

0

 

5

1

1

0,1

1

0

 

6

0

0

0

0

0,1

 

7

1

1

1

1

1

 

8

0

0

0

0

0

 

9

0

1

1

0

1

 

10

2-3.32

2.19-4.17

2.18-4.22

2.36-3.94

3.12-4.4

no matches

11

1

1

0,1

1

0,1

 

12

12

10

13

8

19

 

13

11-24

8-17

16-25

18-27

12-18

no matches

14

1

1

1

0

0

no matches

15

2.38-3.40

2.41-4.14

2.38-4.56

1.80-1.88

1.63-2.43

no matches

16

8-14

9-13

8-12

9-15

8-15

no matches

17

0

0

0,1

1

1

 

18

0

1

1

0

1

no matches

19

0

0

0

0

0

 

20

1

1

1

1

1

 

21

2-4

2-5

2-6

1-3

1-3

 

22

2

2

2

1

1,2

 

23

0

0

1

n/a

n/a,0

 

24

6.58-8.5

2.11-3.4

4.65-12.82

4.82-5.89

5.13-11.99

no matches

25

1

1

1

0,1

0,1

 

26

1

1

1

1

1

 

27

1

1

1

1

1

 

28

1

1

0,1

0

1

 

29

1

1

1

1

1

no matches

30

0

0

0

0

0

no matches

             
 

9

9

15

9

12

 
 

27

27

27

27

27

 
 

33.33

33.33

55.56

33.33

44.44

 

 

 

APPENDIX 4

Characters used to score the fossil Monimiophyllum callidentatum sp. nov. and living Atherospermataceae, and explanation of coding. The character numbers given in this Appendix correspond to the first column in the scoring matrix (Appendix 5, below).

 

 

Character

Coding

1

laminar L:W ratio

number

2

leaf L

range (mm)

3

petiole swollen

0=no, 1=yes

4

base shape convex

0=no, 1=yes

5

base angle acute

0=no, 1=yes

6

apex angle acute

0=no, 1=yes

7

midvein thickened at base

0=no, 1=yes

8

ratio of midvein w:2° w

range (%)

9

secondary attachment to midvein

0=excurrent, 1=decurrent

10

basal secondaries acute

max angle (degrees)

11

secondary loop strength

0=weak, 1=strong

12

proximity of secondary loop to margin

range (%)

13

secondary loop shape

0=even, 1=cone

14

ratio of 2° loop h:w

number

15

number of 2° loops

number

16

intersecondaries present

0=no, 1=yes

17

exterior tertiary loops

0=weak, 1=strong

18

exterior tertiary loop size/spacing

0=irregular, 1=regular

19

margin type

0=entire, 1=toothed

20

teeth per cm

number

21

number of tooth orders

number

22

tooth size

range (%)

23

teeth occur in basal quarter of blade

0=no, 1=yes

24

tooth accessory veins

0=none, 1=conjunctal

25

tooth shape cc/fl

0=no, 1=yes

 

APPENDIX 5

Monimiaceae Character Matrix

Character data for living Monimiaceae and the single fossil of Monimiophyllum callidentatum, sp. nov. Scores for living species are bold where they match or fully capture the fossil species score or range.

 
 

Monimiophyllum callidentatum

Kibara coriacea

Wilkiea rigidifolia

Kibara moluccana

Wilkiea angustifolia

Kairoa suberosa

Wilkiea hugeliana

Kibara macrophylla

Wilkiea austroqueenslandica

1

4.56

2.31-2.42

2.88-3.4

2.53-3.17

2.25-4.12

2.86-3.28

2.98-3.82

2.83-3

2.97-3.43

2

73

155-226

161-221

205-323

70-142

177-280

49-119

63-201

86-137

3

1

1

1

1

1

1

1

1

1

4

1

0

1

0

1

1

1

1

1

5

1

1

1

1

1

1

1

1

1

6

1

0

0

1

1

1

1

1

1

7

1

1

1

1

0

1

1

1

1

8

2.32-3.04

1.90-2.20

2.29-3.76

2.44-3.46

2.75-3.83

2.88-3.90

2.20-3.00

1.85-3.62

2.16-4.45

9

0

1

0

1

1

1

0,1

1

0,1

10

25-30

11

23

21

25

27

45

22

10

11

1

1

1

1

1

1

1

1

1

12

8-13

19-24

7-14

16-18

15-21

8-13

16-33

11-20

16

13

0

1

0

0

1

0

0

0

1

14

1.43-1.6

1.64-2.89

1.7-2.06

1.25-1.32

1.14-1.23

1.32-1.43

1.07-1.89

1.33-1.59

1.55-2

15

19

9-11

15

14

9-12

15-24

9-14

12-14

14-20

16

0

1

1

1

1

1

0

0

1

17

0

0

1

1

1

0

0,1

1

1

18

0

0

1

1

0

0

1

1

1

19

1

0,1

0,1

0

1

1

1

0,1

1

20

5-9

1-2

2-3

n/a

1-2

1-2

2-5

1-2

1-2

21

1

2

1

n/a

1

1

1,2

2

2

22

5.03-7.14

1.64-2.17

1.98-3.41

n/a

2.13-5.38

4.16-6.92

3.31-8.35

3.11-5.98

3.58-6.86

23

1

0,1

0,1

n/a

1

1

0,1

1

0

24

0

1

0

n/a

1

0

1

1

1

25

1

1

1

n/a

1

0

1

0

1

                   
 

Number of matches

10

14

6

11

17

19

13

11

 

Characters scored

25

25

19

25

25

25

25

25

 

% similarity

40.00

56.00

31.58

44.00

68.00

76.00

52.00

44

Appendix 5 (continued).

 

Wilkiea smithii

Wilkiea sp. "Palmerston"

Mollinedia schottiana

Mollinedia widgrenii

Grazielanthus arkeocarpus

Mollinedia ovata

Macropeplus ligustrinus

Macrotorus utriculatus

Hennecartia omphalandra

1

2.26-3.36

2.71-2.94

2.13-2.71

1.36-3.5

2.29-2.86

1.85

2-2.03

2.7-2.78

3.62-4.24

2

61-121

103-114

38-143

53-182

20-32

135-157

36-81

178-186

76-106

3

1

1

1

1

1

0

1

1

1

4

1

0

0

1

0

0

1

0

1

5

1

1

1

1

1

1

1

1

1

6

1

1

1

1

1

0

1

1

1

7

1

1

0

1

0

1

1

0

1

8

3.75-4.40

2.14-2.55

1.88-2.06

2.27-2.52

1.50-3.14

1.71-2.70

2.55-3.44

2.37-3.00

1.92-3.50

9

1

1

0

0

0

1

0,1

0

1

10

46

25

17

18

6

9

14

16

11

11

1

1

0

0

0

1

1

1

1

12

12-16

18-23

12-17

9-13

18-23

9-14

12-18

18-21

17-25

13

0

0

0,1

1

1

1

0

0,1

1

14

1.18-1.71

1.36-1.5

1.57-1.75

1.76-3.06

1.6-2.33

1.8-2.15

1.60-1.96

1.66-1.91

1.25-1.44

15

16-18

10-12

7-12

8-10

7-10

8

9-13

8-9

16-18

16

1

1

0-7

0 (?)

1

1

0

1

0

17

1

1

1

0

1

1

1

1

1

18

1

1

1

0

1

0

0

1

0

19

0

0

1

0,1

1

0,1

0,1

1

1

20

n/a

n/a

1-3

1-3

5-10

0-2

1-3

1

2-4

21

n/a

n/a

1

1

1

1

1

1

2

22

n/a

n/a

2.84-6.00

3.34-7.73

2.36-5.23

1.32-4.08

4.93-11.31

3.29-6.73

5.94-8.69

23

n/a

n/a

0,1

0

0

0

0

0

1

24

n/a

n/a

0

1

1

1

1

1

1

25

n/a

n/a

1

0

1

1

0

0

1

                   
 

10

7

13

13

10

7

14

8

13

 

19

19

25

25

25

25

25

25

25

 

52.63

36.84

52.00

52.00

40.00

28.00

56.00

32.00

52.00

 Appendix 5 (continued).

 
 

Tetrasynandra pubescens

Steganthera laxiflora

Steganthera australiana

Steganthera macooraia

Steganthera cooperorum

Steganthera hirsuta

Matthaea sancta

Matthaea heterophylla

Austromatthaea elegans

1

2.93-4.21

2.2-2.33

3.33-3.4

2.75-3.07

3.23-5.1

2.14-2.35

2.77-2.96

3.75-4.08

3.46-5.03

2

59-167

105-112

130-136

83-110

51-126

77-310

80-119

30-53

83-176

3

1

1

1

1

1

1

1

1

1

4

1

1

0

0

0

1

0

1

1

5

1

0

1

1

1

0

1

1

0

6

1

1

1

1

1

1

0

1

1

7

1

1

1

1

0

1

1

1

1

8

1.56-2.10

2.06-2.58

2.06-2.65

3.33-3.48

2.22-3.15

1.73-2.14

2.00-2.11

2.5-4.16

1.89-2.59

9

1

1

0

1

1

0

1

0

0

10

14

10

11

9

16

10

12

21

0

11

1

0

1

1

1

1

1

1

1

12

13-26

13-25

15-25

13-17

8-16

8-15

10-17

10-12

8-18

13

1

1

0

0

0

1

1

1

0

14

1.29-1.83

1.48-2.56

1.18-1.5

1.75-1.86

1.39-1.57

1.17-1.52

1.27-1.71

1.13-1.4

1.27-1.63

15

8-9

6-7

11-14

12-14

8-13

10-12

9-11

12-13

14-17

16

1

0

1

1

1

0

1

0

1

17

1

1

0

0

1

1

1

1

0

18

1

0

0

0

1

1

1

0

0

19

1

0,1

0,1

0

0

0

0

0

1

20

3-7

1-2

1-2

n/a

n/a

n/a

n/a

n/a

2-3

21

2

1

1

n/a

n/a

n/a

n/a

n/a

1,2

22

3.89-7.45

2.42-5.64

2.92-8.76

n/a

n/a

n/a

n/a

n/a

3.68-6.81

23

1

0

0

n/a

n/a

n/a

n/a

n/a

1

24

1

1

1

n/a

n/a

n/a

n/a

n/a

0

25

1

1

1

n/a

n/a

n/a

n/a

n/a

0

                   
 

13

10

14

8

9

9

5

8

15

 

25

25

25

19

19

19

19

19

25

 

52.00

40.00

56.00

42.11

47.37

47.37

26.32

42.11

60.00

 Appendix 5 (continued).

 
 

Levieria acuminata

Hedycarya loxocarya

Hedycarya cupulata

Hedycarya angustifolia

Kibaropsis caledonica

Hedycarya arborea

Tambourissa purpurea

Tambourissa elliptica

Tambourissa ficus

1

3.43-3.58

2.59-3.34

2.47-3.42

2.38-3.47

2.71-4.52

2.53-2.9

2.5-2.61

1.29-2

2.24-2.98

2

72-136

88-147

65-116

19-118

113-233

43-84

35-99

52-145

83-176

3

0

1

1

1

1

1

1

0

0

4

0

0

1

1

0

1

0

1

0

5

1

1

1

1

1

1

1

1

1

6

1

0

1

1

1

1

1

1

1

7

1

1

1

1

1

1

0

0

0

8

2.33-3.16

1.53-4.52

2.79-5.30

2.48-4.75

4.31-5.85

3.69-4.76

2.27-4.14

3.28-4.83

2.37-3.57

9

1

0

0

0,1

0,1

0

0

1

1

10

12

20

20

23

0

8

16

14

11

11

0

0

1

0

1

1

0

0

0

12

8-15

13-18

13-27

15-21

9-14

15-22

8-17

9-14

11-17

13

1

1

0

1

0

0

0

0

0,1

14

1.55-2.4

1.47-2.06

1.36-1.73

1.3-1.5

1.6-2

1.5-2

1.47-1.83

1.6-2.15

1.5-2.67

15

6-8

8-10

9-12

8-12

14-18

10-15

4-11

10-19

10-14

16

0

1

1

1

1

1

0

1

1

17

0

0

1

0

1

0

0

0

0

18

0

0

0

0

0

0

0

0

0

19

1

0,1

0,1

1

0

1

0

0

0

20

1-2

1

1-2

1-4

n/a

1-3

n/a

n/a

n/a

21

1

1

1

2

n/a

2

n/a

n/a

n/a

22

3.65-8.57

5.29-10.8

5.47-10.5

2.23-12.1

n/a

6.03-7.86

n/a

n/a

n/a

23

0

0

0

0

n/a

0

n/a

n/a

n/a

24

0

1

0?

1

n/a

1

n/a

n/a

n/a

25

0

0

0

1

n/a

0

n/a

n/a

n/a

                   
 

13

10

14

13

9

13

12

9

6

 

25

25

25

25

19

25

19

19

19

 

52.00

40.00

56.00

52.00

47.37

52.00

63.16

47.37

31.58

Appendix 5 (continued). 

 
 

Tambourissa tau

Ephippiandra madagascariensis

Tambourissa leptophylla

Tambourissa longicarpa

Decarydendron ranomafanensis

Xymalos monospora

Hortonia floribunda

Palmeria foremanii

Palmeria scandens

1

3.17-3.87

1.55-1.88

1.5-1.87

1.39-3.1

1.89-2.16

2.12-2.61

1.5-3.11

2.67-2.93

1.81-3.31

2

165-298

34-120

60-230

71-325

36-82

55-141

39-109

44-104

102-123

3

1

0

0

1

1

0

1

1

0,1

4

1

1

1

1

1

0

1

1

1

5

1

0

1

1

1

1

1

1

0,1

6

1

0

1

1

1

1

1

1

0,1

7

1

0

0

0

0

1

1

1

0

8

2.61-4.49

2.50-2.67

2.71-4.67

1.76-4.16

2.40-3.33

2.61-4.17

1.79-2.46

1.78-4.76

2.00-2.61

9

0

0

0

0

0

0

0

0

0

10

13

13

16

13

13

23

14

15

12

11

0

1

0

0

1

1

0

1

0,1

12

12-18

15-30

10-21

16-26

9-15

12-17

12-18

15-18

18-25

13

1

1

0,1

0,1

0

0

0,1

0

0

14

1.73-2.24

1.7-3.27

1.38-2.13

1.65-2.65

1.5-2.33

1.29-1.72

1.14-1.76

1.29-1.36

1.23-2.21

15

8-15

6-8

9-13

6-15

7-13

8-12

4-6

9-14

10-14

16

0

0

1

0

1

1

0

0

1

17

0

0

0

1

0

1

0

1

1

18

0

1

0

0

0

0

1

0

0,1

19

0

1

0

1

0

0,1

0

0

0

20

n/a

1-3

n/a

1-2

n/a

1

n/a

n/a

n/a

21

n/a

2

n/a

1

n/a

1

n/a

n/a

n/a

22

n/a

6.09-11.32

n/a

8.87-14.42

n/a

4.88-6.52

n/a

n/a

n/a

23

n/a

0,1

n/a

0

n/a

0

n/a

n/a

n/a

24

n/a

1

n/a

1

n/a

1

n/a

n/a

n/a

25

n/a

0

n/a

0

n/a

0

n/a

n/a

n/a

                   
 

9

8

9

12

11

11

11

12

8

 

19

25

19

25

19

25

19

19

19

 

47.37

32.00

47.37

48.00

57.89

44.00

57.89

63.16

42.11

Appendix 5 (continued).

 
 

Monimia rotundifolia

Monimia ovalifolia

Peumus boldus

1

1.35-1.52

1.23-1.61

1.71-2.32

2

47-146

61-163

24-65

3

1

1

1

4

1

1

1

5

0

0

1

6

0

0

1

7

1

1

1

8

1.78-2.61

2.20-2.57

2.06-2.42

9

0

0

0

10

5

5

22

11

0

0

0

12

15-20

13-18

12-23

13

0

0

0,1

14

2.04-3.13

2.18-4.27

1.38-2.2

15

8-10

9-11

6-11

16

0

0

1

17

1

1

0

18

0

0

0

19

0

0

0

20

n/a

n/a

n/a

21

n/a

n/a

n/a

22

n/a

n/a

n/a

23

n/a

n/a

n/a

24

n/a

n/a

n/a

25

n/a

n/a

n/a

       
 

8

8

10

 

19

19

19

 

42.11

42.11

52.63

 

TABLE 1. Macrofossil records of Atherospermataceae and Monimiaceae.

 

Fossil

Organ

Age

Provenance

References

ATHEROSPERMATACEAE

Laurelites jamesrossii Poole and Francis

wood

Campanian

James Ross Island

Poole and Francis, 1999

Protoatherospermoxylon spp.

wood

Late Cretaceous

Cape Province, S.Africa

Mädel, 1960; Müller-Stoll and Mädel, 1962

Atherospermoxylon bulboradiatum Poole and Gottwald

wood

Paleocene

Seymour Island

Poole and Gottwald, 2001

Atherospermophyllum guinazui (Berry), comb. nov.

leaves

Early and middle Eocene

Patagonia, Argentina

Berry, 1935, 1938; this paper

Laurelia-like wood

wood

Paleocene-Eocene

Seymour Island

Poole and Gottwald, 2001

Atherospermataceous wood

wood

Late Eocene

Germany

Gottwald, 1992

Laurelioxylon intermedium Nishida

wood

"Tertiary"

Chile

Nishida, 1984

Atherospermoxylon aegyptiacum (Schenk) R. Kräusel

wood

Early Oligocene

Egypt

Kräusel, 1939

Laurelites doroteaensis Nishida, H. Nishida and Nasa

wood

Oligocene-Miocene

Patagonia, Chile and Argentina

Nishida et al., 1988; Pujana 2009

Laurelia otagoensis Conran, Bannister and D.E. Lee

leaves with cuticle, fruits

Early Miocene

New Zealand

Conran et al., 2013

Atherosperma moschatum Labill.

leaves

Pliocene-Pleistocene

Tasmania

Hill and MacPhail, 1985

         

MONIMIACEAE

       

Hedycaryoxylon hortonioides Mädel

wood

Late Cretaceous

Cape Province, S.Africa

Mädel, 1960; Müller-Stoll and Mädel, 1962

Hedycaryoxylon tambourissoides Poole and Gottwald

wood

Campanian

James Ross Island

Süss, 1960; Poole and Gottwald, 2001

Monimiophyllum antarcticum Zastawniak

leaves

?Late Paleocene

King George Island

Birkenmajer and Zastawniak, 1989

Monimiophyllum callidentatum sp. nov.

leaf

Early Eocene

Patagonia, Argentina

This paper

Flacourtioxylon (Monimiaxylon) gifaense

wood

Late Eocene

Libya

Louvet, 1974

Xymaloxylon (Monimiaxylon) zeltenense

wood

Early Oligocene

Libya

Louvet, 1974

Monimiaceous wood

wood

Early Oligocene

Oman

Privé-Gill et al., 1993

 

TABLE 2. Extant Atherospermataceae species scored.

 

Species

Range

Atherosperma moschatum Labill.

NSW, Tas, Vic

Daphnandra apatela Schodde

NSW, Qld

Daphnandra micrantha (Tul.) Benth.

NSW

Daphnandra repandula (F.Muell) F. Muell.

NSW, Qld

Doryphora aromatica (F.M.Bailey) L.S. Sm.

Qld

Doryphora sassafras Endl.

NSW, Qld, Vic

Dryadodaphne novoguineensis (Perk.) A.C. Sm.

New Guinea

Dryadodaphne trachyphloia Schodde

Qld

Laurelia novae-zelandiae A. Cunn.

New Zealand

Laurelia sempervirens (Ruiz and Pav.) Tul.

S Chile

Laureliopsis philippiana (Looser) Schodde

S Chile and Argentina

Nemuaron vieillardii (Baill.) Baill.

New Caledonia

 

Abbreviations: NSW- New South Wales, Tas- Tasmania, Vic- Victoria, Qld- Queensland, Australia.

 

 

TABLE 3. Extant Monimiaceae species scored.

 

Species

Range

Austromatthaea elegans L.B. Sm.

Qld

Decarydendron ranomafanensis Lorence and Razafim.

Madagascar

Ephippiandra madagascariensis (Danguy) Lorence

Madagascar

Grazielanthus arkeocarpus Peixoto and Per.-Moura

SE Brazil

Hedycarya angustifolia A. Cunn.

Qld, Tas

Hedycarya arborea J.R. Forst. and G. Forst.

New Zealand

Hedycarya cupulata Baill.

New Caledonia

Hedycarya loxocarya (Benth.) W.D. Francis

Qld

Hennecartia omphalandra Poiss.

S Brazil, NE Argentina, Paraguay

Hortonia floribunda Wight ex Arn.

Sri Lanka

Kairoa suberosa Philipson

New Guinea

Kibara coriacea (Blume) Hook. f. and A. Thomps.

Malaysia

Kibara macrophylla (A. Cunn.) Benth.

NSW

Kibara moluccana Boerl. ex Perk.

New Guinea, Moluccas

Kibaropsis caledonica (Guillaumin) J. Jeremie

New Caledonia

Levieria acuminata Perk.

New Guinea, Qld

Macropeplus ligustrinus (Tul.) Perk.

SE Brazil

Macrotorus utriculatus Perk.

SE Brazil

Matthaea sancta Blume

Malaysia, Indonesia

Mollinedia ovata Ruiz and Pav.

Ecuador

Mollinedia schottiana (Spreng.) Perk.

Brazil

Mollinedia widgrenii A. DC.

Brazil

Monimia ovalifolia Thouars

Réunion, Mascarenes

Monimia rotundifolia Thouars

Réunion, Mascarenes

Palmeria foremanii Whiffin

NSW, Qld

Palmeria scandens F. Muell.

NSW, Qld

Peumus boldus Molina

Chile

Steganthera australiana C.T. White

New Guinea

Steganthera cooperorum Whiffin

Qld

Steganthera hirsuta Perk.

Qld, New Guinea

Steganthera laxiflora (Benth.) Whiffin and Foreman

Qld

Steganthera macooraia (F.M. Bailey) P.K. Endress

Qld

Tambourissa elliptica A. DC.

Réunion, Mascarenes

Tambourissa ficus (Tul.) A. DC.

Mauritius, Mascarenes

Tambourissa leptophylla (Tul.) A. DC.

Mayotte, Comoros

Tambourissa longicarpa Lorence

Madagascar

Tambourissa purpurea (Tul.) A. DC.

Mauritius, Mascarenes

Tambourissa tau Lorence

Mauritius, Mascarenes

Wilkiea angustifolia (F.M. Bailey) Perk.

Qld

Wilkiea austroqueenslandica Domin

NSW, Qld

Wilkiea hugeliana (Tul.) A. DC.

NSW, Qld

Tetrasynandra pubescens Perk.

Qld

Wilkiea rigidifolia (A.C. Sm.) Whiffin and Foreman

Qld, New Guinea

Wilkiea smithii Whiffin

Qld

Wilkiea sp. "Palmerston"

Qld

Xymalos monospora (Harv.) Baill.

Bioko, Cameroon

 

Abbreviations: NSW- New South Wales, Tas- Tasmania, Vic- Victoria, Qld- Queensland, Australia.

 

TABLE 4. Percent character similarity of extant Atherospermataceae to Atherospermophyllum guinazui, comb. nov.

Taxon  %Similarity 
 Genus  
Daphnandra 63
Doryphora 56
Laurelia 56
Dryadodaphne 48
Laureliopsis 41
Atherosperma 33
Nemuaron 26
   
Species  
Daphnandra apatela 56
Doryphora sassafras 44
Laureliopsis philippiana 41
Laurelia sempervirens 41
Dryadodaphne novoguineensis 37
Atherosperma moschatum 33
Dryadodaphne trachyphloia 33
Daphnandra micrantha 33
Daphnandra repandula 33
Doryphora aromatica 33
Laurelia novae-zelandiae 26
Nemuaron vieillardii 22

Notes: Generic scores are a compilation of the constituent species scores. All taxa scored have toothed leaf-margins.

 

TABLE 5. Percent character similarity of extant Monimiaceae to Monimiophyllum callidentatum, sp. nov.

 

Taxon

%Similarity

Genus

 

Wilkiea^

76

Mollinedia^

76

Kibara^

68

Kairoa*

68

Hedycarya^

68

Tambourissa^

68

Palmeria

68

Steganthera^

64

Austromatthaea*

60

Decarydendron

58

Hortonia

58

Macropeplus^

56

Peumus

53

Hennecartia*

52

Levieria*

52

Kibaropsis

47

Xymalos^

44

Monimia

42

Grazielanthus*

40

Macrotorus*

32

Ephippiandra*

32

Matthaea

26

 

Species

 

Wilkiea hugeliana*

76

Kairoa suberosa*

68

Tambourissa purpurea

63

Palmeria foremanii

63

Austromatthaea elegans*

60

Decarydendron ranomafanensis

58

Hortonia floribunda

58

Wilkiea rigidifolia*

56

Macropeplus ligustrinus*

56

Steganthera australiana*

56

Hedycarya cupulata*

56

Wilkiea smithii

53

Peumus boldus

53

Kibara macrophylla*

52

Mollinedia schottiana*

52

Mollinedia widgrenii*

52

Hennecartia omphalandra*

52

Tetrasynandra pubescens*

52

Levieria acuminata*

52

Hedycarya angustifolia*

52

Hedycarya arborea*

52

Tambourissa longicarpa*

48

Steganthera cooperorum

47

Steganthera hirsuta

47

Kibaropsis caledonica

47

Tambourissa elliptica

47

Tambourissa tau

47

Tambourissa leptophylla

47

Wilkiea angustifolia*

44

Xymalos monospora*

44

Wilkiea austroqueenslandica

44

Steganthera macooraia

42

Palmeria scandens

42

Monimia rotundifolia

42

Monimia ovalifolia

42

Matthaea heterophylla

42

Kibara coriacea*

40

Grazielanthus arkeocarpus*

40

Steganthera laxiflora*

40

Hedycarya loxocarya*

40

Wilkiea sp. "Palmerston"

37

Kibara moluccana

32

Tambourissa ficus

32

Macrotorus utriculatus*

32

Ephippiandra madagascariensis*

32

Mollinedia ovata*

28

Matthaea sancta

26

Notes: Generic scores are a compilation of the constituent species scores.

*Genus or species with toothed leaves.

^Genus in which some species are toothed.

 

 

knightCassandra L. Knight
Department of Geosciences
Pennsylvania State University
University Park
Pennsylvania 16802 USA
This email address is being protected from spambots. You need JavaScript enabled to view it.

I graduated in 2012 with an M.S. in Geosciences from Pennsylvania State University, and previously with a B.S. in Geology from Colby College in Maine. My masters research focused on fossil rainforest leaves from Eocene Patagonia, especially the systematics, paleoecology, and paleobiogeography of fossil Laurales. I have also done leaf morphological assessment of the flora from Florissant Fossil Beds National Monument as a Geocorps Intern and have worked doing paleobotanical surveys at Grand Canyon National Park. In addition to Patagonia and the Western USA, I have also done field work in South Africa, New Zealand, and Australia. I now work for the National Park Service, coordinating National Fossil Day.

divider

wilfPeter Wilf
Department of Geosciences
Pennsylvania State University
University Park
Pennsylvania 16802 USA
This email address is being protected from spambots. You need JavaScript enabled to view it.

After an eclectic and non-geological undergrad career (B.A. Penn 1985), I spent three years teaching junior high school in New Jersey and then four years freelancing with my guitars in West Philly. I discovered geology and then paleobotany at the early age of 29 and have never looked back. I somehow moved from the street, almost literally, onto the doctoral track in Penn Geology and defended in 1998. Most of my thesis research was done in residence at the Smithsonian, on megafloral and paleoclimatic change across the Paleocene-Eocene boundary in southern Wyoming. During this time and in an ensuing Smithsonian postdoc, I began developing two major subsequent themes of my research: the fossil history of plant-insect associations and the unbelievable riches of Patagonian fossil floras. I spent three terrific years at Michigan, 1999-2002, as a Michigan Fellow and happily joined the Penn State Geosciences faculty in 2002, where I have been developing these and several other wonderful research projects with my students and colleagues all over the world.