Articles

Print Email

Ambergris cololites of Pleistocene sperm whales from central Italy and description of the new ichnogenus and ichnospecies Ambergrisichnus alleronae

Paolo Monaco, Angela Baldanza, Roberto Bizzarri, Federico Famiani, Marco Lezzerini, and Francesco Sciuto

Plain Language Abstract

Early Pleistocene clay marine deposits of Umbria, Central Italy, contain trace fossils, which are interpreted as specimens of fossil ambergris and attributed to cololites of sperm whales. These specimens represent a unique occurrence and so this paper provides a complete description of these trace fossils and proposes a new ichnogenus and ichnospecies Ambergrisichnus alleronae. This work increases knowledge of vertebrate bromalites. Moreover, this new finding increases the data about the frequency of sperm whales in the Tyrrhenian Sea during Early Pleistocene, and it also raises questions about the causes of this anomalous accumulation. These coprolites were deposited in a 100-150 m deep marine environment, and the large number of structures in a restricted area is reasonably interpreted as due to multiple death events of sperm whales. Due to the water depth, these events are more likely due to whale falls rather than with mass stranding events. The mineralogical and microstructural analyses, which accompany the description of A. alleronae igen. et isp. nov., give insights about the processes that took place after the sperm whale carcasses reached the seabed and led to fossilization.

Resumen en Español

Cololitos de ámbar gris de cachalotes del Pleistoceno de Italia central y descripción del nuevo icnogénero e icnoespecie Ambergrisichnus alleronae

Se describe Ambergrisichnus alleronae igen. et isp. nov. de los depósitos de arcillas marinas del Pleistoceno temprano de Umbria, Italia central, atribuido a cololitos (evisceralitos) de cachalotes. Esta interpretación se apoya en las siguientes características que se observan a menudo en ejemplares modernos de ámbar gris: organización interna en forma de estructuras concéntricas, forma externa con estrías convergentes y protuberancias (rognons), y presencia de inclusiones de picos de calamar. Estos cololitos quedaron depositados en un ambiente marino relativamente profundo (100-150 m), y la concentración de un gran número de estas estructuras en un área restringida es atribuida de forma plausible a múltiples eventos de muerte de cachalotes. La descripción de A. alleronae igen. et isp. nov. se lleva a cabo mediante el análisis de los procesos tafonómicos que tuvieron lugar después de que los cadáveres de los cachalotes alcanzasen el fondo como paso previo a la fosilización. El análisis de la micro- y macrofauna bentónica localizada cerca de las estructuras estudiadas proporciona datos complementarios, los cuales apoyan la reconstrucción de las condiciones paleoambientales y paleoecológicas comparables con las que se dan actualmente para el establecimiento de comunidades de organismos sobre los cadáveres de ballenas. Este trabajo aumenta el conocimiento de los coprolitos de vertebrados. Por otra parte, esta nueva información proporciona datos sobre la abundancia de cachalotes en el mar Tirreno durante el Pleistoceno temprano, y plantea nuevas preguntas sobre las causas de esta acumulación anómala.

Palabras clave: Icnología; Cololitos; Cachalotes; Pleistoceno temprano; Paleoambiente; Italia central

Traducción: Enrique Peñalver

Résumé en Français

Cololites en ambre gris de cachalots du Pléistocène de l'Italie centrale et description du nouveau ichnogenre et ichnoespèce Ambergrisichnus alleronae

Ambergrisichnus alleronae igen. et isp. nov., provenant de dépôts d'argiles marins de l'Ombrie, du Pléistocène inférieur, de l'Italie centrale, est ici décrit, et attribué à des cololites (evisceralites) de cachalots. Cette interprétation est soutenue par les caractéristiques suivantes qui sont fréquemment mentionnés dans l'ambre gris moderne, y compris: l'organisation interne des structures concentriques, la forme extérieure de la convergence des stries et des renflements (rognons), et les inclusions de becs de calamars. Ces cololites ont été déposés dans un milieu marin relativement profond (100-150 m), et le grand nombre de structures dans cette zone restreinte est plausiblement attribuées à plusieurs événements de décès de cachalots. La description de A. alleronae igen. et isp. nov. est tenue par l'analyse des processus taphonomiques qui ont eu lieu après que les carcasses de cachalot eu atteint le fond de la mer et conduit à la fossilisation. L'analyse des micro- et macrofaune benthiques, trouvé à proximité des structures étudiées, fournit des données supplémentaires, qui soutiennent la reconstruction de conditions paléoécologiques et paléoenvironnementales comparables à ceux des communautés de chute de baleine. Ce travail augmente la connaissance des coprolithes vertébrés. En outre, cette nouvelle information fournit des données sur la fréquence des cachalots dans la mer Tyrrhénienne, au Pléistocène inférieur, et soulève de nouvelles questions sur les causes de cette accumulation anormale.

Mots-clés: Ichnologie; Cololites; cachalots; Pléistocène inférieur; paléoenvironnement; Italie centrale

Translator: Kenny J. Travouillon

Deutsche Zusammenfassung

Ambergris Koprolithen pleistozäner Pottwale aus Zentralitalien und Beschreibung der neuen Ichnoganttung und Ichnoart Ambergrisichnus alleronae

Ambergrisichnus alleronae igen. et isp. nov. aus frühpleistozänen marinen Tonablagerungen von Umbrien, Zentralitalien ist hier beschrieben und den Cololithen (Evisceralithen) von Pottwalen zugeschrieben. Diese Interpretation wird unterstützt durch die folgenden Charakteristika, die häufig im modernen Ambergis identifiziert werden: interne Ausrichtung von konzentrischen Strukturen, externe Form mit konvergierenden Striae und Wülsten (rognons) und Einschlüssen von Tintenfischschnäbeln. Diese Cololithen wurden in einem relativ tiefen (100-150m) marinen Milieu abgelagert. Die große Anzahl dieser Strukturen in einem solch begrenzten Gebiet ist glaubhaft den mehrfachen Sterbeereignissen von Pottwalen zugeschrieben. Die Beschreibung von A. alleronae igen. et isp. nov. ergibt sich aus der Analyse des taphonomischen Prozesses, der stattfand, nachdem der Walkadaver den Ozeanboden erreicht hat und die Fossilisation anfing. Die Analyse der benthischen Mikro-und Makrofauna, die in der Nähe der untersuchten Strukturen gefunden worden war, liefert zusätzliche Daten, die die Rekonstruktion der paläoökologischen und Paläoumwelt-Konditionen unterstützt, die mit denen der Wal-Gemeinschaften vergleichbar sind. Diese Untersuchung vermehrt das Wissen über Wirbeltierkoprolithen. Darüber hinaus liefert diese neue Information Daten über die Häufigkeit von Pottwalen im Tyrrhenischen Meer während des frühen Pleistozän und wirft neue Fragen zu dieser ungewöhnlichen Ansammlung auf.

Schlüsselwörter: Ichnologie; Cololithen; Pottwale; frühes Pleistozän; Palaeoenvironment; Zentralitalien

Translator: Eva Gebauer

Arabic

464 arab

Translator: Ashraf M.T. Elewa

 

 

Table 1. Distribution of commonest mollusc, foraminifera and ostracoda species among the study sections. SF = Suspension Feeding; CH = Chemosynthetic species; CA = Carnivorous species; PO = Polychaetes organic compound feedings; IN = Benthic Infaunal; EP = Benthic Epifaunal; Pl = Planktonic; relative abundances: x = rare; X = common; X = abundant.

Mollusca

Affinity

Montemoro section (lower)

Montemoro section (upper)

Bargiano section

Foraminifera

Affinity

Montemoro section

Bargiano section

Ostracoda

Montemoro section

Bargiano section

Dentalium fossile

SF

X

X

X

Ammonia beccarii

IN

X

 

Acanthocythereis hystrix

 

X

Dentalium sexangulum

SF

X

X

X

Ammonia papillosa

IN

X

 

Aurila convexa

x

 

Aequipecten opercolaris

SF

 

 

X

Ammonia parkinsoniana

IN

X

 

Bosquetina carinella

 

X

Amusium cristatum

SF

X

X

X

Ammonia tepida

IN

X

x

Carinovalva testudo

 

X

Anadara diluvii

SF

X

X

X

Asterigerinata mammilla

EP

x

x

Costa edwardsii

X

X

Arctica islandica

SF

 

x

 

Bolivina spathulata

IN

X

 

Cytherella spp.

 

X

Corbula gibba

SF

x

X

X

Bulimina marginata

IN

X

X

Cytherella vulgatella

 

X

Glans intermedia

SF

 

X

X

Bulimina spinata

IN

X

X

Cytheridea neapolitana

X

X

Glossus humanus

SF

 

X

X

Cancris auriculus

EP

X

x

Echinocythereis pustulata

 

X

Lucinoma asaphus

CH

 

X

 

Cassidulina laevigata

IN

X

 

Henryhowella ex H. hirta group

x

 

Megaxinus incrassatus

CH

 

X

X

Gyroidina altiformis

EP

X

 

Krithe praetexta

 

X

Myrtea spinifera

CH

 

X

X

Heterolepa floridana.

EP

x

x

Pterygocythereis jonesii

X

X

Neopycnodonte cochlear

SF

 

X

X

Hyalinea balthica

EP

x

 

Ruggeria longecarinata

 

X

Nucula fragilis

SF

 

X

X

Lenticulina calcar

EP

X

X

Tyrrenocithere pontica

x

 

Nucula placentina

SF

 

X

X

Lobatula lobatula

EP

x

 

 

 

 

Ostrea lamellosa

SF

 

X

X

Marginulina costata

IN

X

x

 

 

 

Pecten jacobaeus

SF

 

X

X

Melonis barleanum

IN

X

X

 

 

 

Solemya sp.

CH

 

X

 

Melonis pompilioides

IN

X

X

 

 

 

Venus multilamella

SF

X

X

X

Nonionella turgida

IN

x

 

 

 

 

Yoldia nitida

CH

 

X

 

Pullenia bulloides

IN

x

 

 

 

 

Aporrhais pespelecani

SF

 

X

 

Quinqueloculina seminula

EP

x

X

 

 

 

Epitomium sp.

CA

 

 

X

Textularia sagittula

EP

X

 

 

 

 

Euspira catena

CA

X

X

X

Uvigerina mediterranea

IN

X

X

 

 

 

Haustator vermicularis

SF

X

X

X

Vaginulina striatissima

IN

 

X

 

 

 

Nassarius italicus

PO

X

X

X

Globigerina bulloides

Pl

X

 

 

 

 

Nassarius clathratus

PO

X

X

 

Globigerina cariacoensis

Pl

 

x

 

 

 

Ringicula auriculata

PO

x

X

X

Globigerinoides ruber

Pl

x

X

 

 

 

Ringicula buccinea

PO

 

X

 

Globigerinoides sacculifer

Pl

x

x

 

 

 

Turritella spirata

SF

X

X

X

Globorotalia inflata

Pl

X

 

 

 

 

Turritella tricarinata

SF

 

X

X

Neogloboquadrina spp.

Pl

X

 

 

 

 

 

 

 

 

 

Orbulina universa

Pl

X

 

 

 

 

 

monacoPaolo Monaco
Department of Physics and Geology
University of Perugia
Via Pascoli ‒ I-06123 Perugia
Italy
This email address is being protected from spambots. You need JavaScript enabled to view it.

Ichnologist and Sedimentologist at the BIOSED-LAB Research Group of Department of Physics and Geology. Researcher in marine Ichnology, Stratigraphy, and Geology. Member of SPI (Italian Paleontological society) and of ICHNO-ITALIA (Ichnology of Italian Research Group). Experienced in many studies from Jurassic to Pleistocene in Apennines and southern Alps, focusing ichnotaxa of carbonate or turbiditic siliciclastic deposits, and finalized to taphonomy, ichnology, stratigraphy, palaeoecological reconstructions and evaluation of ichnocoenosis and ichnofacies changes.

divider


baldanzaAngela Baldanza (corresponding author)
Department of Physics and Geology
University of Perugia
Via Pascoli ‒ I-06123 Perugia
Italy
This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.">

Researcher on Geology, Stratigraphy and Sedimentology. Research fields: Biostratigraphy (Calcareous Nannofossils and Foraminifera), Paleoecology and paleoenvironmental reconstruction of marine and continental successions (from Jurassic to Quaternary). Archeometry (characterization of raw and building materials from historical Greek and Roman Italian sites). Conservation and enhancement of plant fossil record (Dunarobba Fossil Forest, Umbria, Italy). Member of SPI (Italian Paleontological society) and AIQUA (Italian Association for Quaternary researches). 

divider

bizzarriRoberto Bizzarri
Department of Physics and Geology
University of Perugia
Via Pascoli ‒ I-06123 Perugia
Italy
This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.">

Degree (magna cum laude) in Geology in 2001, he received a Ph.D. in Earth Sciences (Stratigraphy and Sedimentology) in 2007 at the University of Perugia (Italy). He worked on projects for geological mapping 2004-2010. Research Fellow 2011-2012 (POR2007-2013 funding-Regione Umbria) at the University of Perugia. Currently collaborates as freelance researcher on Geology and Sedimentology with the Department of Physics and Geology, University of Perugia, and alternates between research and the teaching of Natural Sciences in high school. Member of SGI (Italian Geological Society ) and SPI (Italian Paleontological society). His research interests include Sedimentology of marine and continental deposits, Quaternary Geology and Stratigraphy, Paleoenvironmental reconstruction and Paleoecology, Field Geology and Geological Mapping, Cultural Heritage and Scientific Dissemination.

divider

famianiFederico Famiani
School of advanced studies–Geology division
University of Camerino
Via Gentile III da Varano ‒ I-62032 Camerino
Italy
This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.">

Coordinator and supervisor at Paleontological Museum of Mount Subasio Regional Park (Assisi, Umbria, Italy). Research fields: Paleoecology and paleoenvironmental reconstruction of marine successions in Umbria and Calabria Quaternary deposits. Interests: GIS, Geological mapping, stratigraphy, Invertebrate Paleontology, Toarcian Ammonites and Quaternary. Member of SPI (Italian Paleontological society) and SGI (Italian Geological Society – deputy of young section). 

divider

lezzeriniMarco Lezzerini
Department of Earth Sciences
University of Pisa
Via Santa Maria
53 ‒ I-56126 Pisa
Italy
This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.">

Researcher in Mineral resources, mineralogical and petrographic applications for the Environment and Cultural Heritage. Member of SIMP (Italian Society of Mineralogy and Petrology), AIAr (Italian Association of Archaeometry) and INSTM (National Interuniversity Consortium of Materials Science and Technology). Research activity is dedicated to the industrial use of minerals, aggregates, dimension and decorative stones, mineralogical and petrographic studies of stones, marbles and mortars, science and technology for cultural heritage. Other research topics are archaeometry and urban geology.

divider

sciutoFrancesco Sciuto
Department of Biological, Geological and Environmental Sciences
University of Catania
Via A. Longo
19 ‒ I-95125 Catania
Italy
This email address is being protected from spambots. You need JavaScript enabled to view it.

Researcher in Stratigraphical Geology at the University of Catania. Member of CONISMA (Interuniversity Consortium for the Marine Sciences) and COCARDE-ERN (Cold-Water Carbonate Mounds in Shallow and Deep Time – The European Research Network). Experienced in the study of the Plio-Pleistocene and Recent marine ostracod association finalized to taxonomy, stratigraphy, palaeoecological reconstructions and evaluation of climate change.

 

divider

 

 

FIGURE 1. 1.Simplified geological scheme for the study area and location of fossil sites (modified after Baldanza et al., 2011). 2. Bargiano and Montemoro sedimentological and biostratigraphic sections. Pictures (m1, m2) show the emergence of large cololites in the Montemoro section. Grain-size scale: C = Clay, S = Silt, VFS = Very Fine Sand, FS = Fine Sand. bmG= base of medium Gephyrocapsa event; blG= base of large Gephyrocapsa event (sensu Raffi, 2002).

 figure 1

FIGURE 2. Bargiano ichnofossils-bearing site. 1., 3. Panoramic views of cololites in W-E (1) and N-S ( 3) directions. 2. Simplified topographic map with localization of cololites and whale remains; main bed’s attitude is reported. 4-6. Details of whale bones. 4. Part of the skull, associated to shell beds. 5. Cervical fused vertebrae 2nd-7th (Ve). 6. Oyster shells (Oy) grown on a bone surface.

figure 2 

FIGURE 3.Simpler cololites (intestinelite group) from Bargiano section. 1., 7. Typical irregular elongated mass (CT02), produced by different helicoidal swirls, Bargiano section, in lateral view (1) and backside view ( 7). Arrows indicate the occurrence of longitudinal striae. 2. Mass (CT03) with bulges (rognons). 3. Holotype of Ambergrisichnus alleronae(CT01), showing converging striae in the left apex (arrow) and enlargement at the other apex. 4.  Characteristic helicoidal arrangement and rings with different colours (CT04). 5-6. Side view (5) and front view (6) of rings (CT04), (modified after Baldanza et al., 2013). 8-9. Modern examples of ambergris masses with concentric rings and changes in colour, comparable to study specimens (arrow in 8 indicates a squid beak).

 figure 3

FIGURE 4.Complex cololites (intestinelite group), Bargiano section. 1., 4. Hummock-like cololite (n 8 in Figure 2.2), 50 cm high and 80 cm wide, with a concave, irregular center and outer sub-circular to elliptical tunnels ( 1). Disaggregated portions ( 4) reveal both striae and concentric structure. 2. Hummock-like cololite (n 12 in Figure 2.2) formed by an accumulation of irregular, elongated slabs. 3. Complex hummock-like structure (n 15 in Figure 2.2) with irregular, meandering tunnels disposed at various levels. 5. Isolated linear cololite (n 25 in Figure 2.2), 20 cm in diameter, partially emerging from clay deposits. 6. Irregular, 60 cm long linear cololite (n 11 in Figure 2.2), showing spiral coiling at the right side.

 figure 4

FIGURE 5. Squid beaks from structure n 8 (Figure 2.2). Part of a lower beak ( 1) and longitudinal section of a beak ( 2), emerging from the rough surface of rock sample. 3-4. Microscopic features of squid beaks inside cololites (structure n 12,Figure 2.2). Crystals and framboids of pyrite ( 4), scattered into the micropeloidal matrix with dolomite microcrystals are also visible ( and 4 are modified after Baldanza et al., 2013).

 figure 5

FIGURE 6.XRPD patterns ( 1) and mass changes in thermogravimetric analysis ( 2) of five cololite samples. Numbers of samples correspond to the structure of provenance (Figure 2.2).

figure 6 

FIGURE 7. 1, 3-8.Transmitted light photomicrographs of petrographic thin sections of the Bargiano cololites. 1. Interior of cololite (structure n 12) showing a micropeloidal matrix crossed by long chains of pyrite microgranules. 2. Beggiatoa specimens, sulphur large bacteria, single free-living filament with sulphur inclusion. 3. Detail of fossil Beggiatoa-like filaments from structure n 12. 4. Subspherical, red-brownish micromasses of pyrite (or sulphur), surrounded by a grey “halo” that inglobates all. To note the micropeloidal matrix. This structure may be comparable with large Thioploca cells. 5-7. Benthic foraminifera, partially and/or totally filled by bacteria-induced microcrystals of pyrite. 8. Pyrite framboids from structure n. 12. 9-10. SEM images of cololite internal fragments.The both surfaces are fresh, no acid attack was made. 9. Rosette structures made of dolomite microcrystals, and scattered single spherical cells referable to bacteria. In the centre, mica crystals with typical shape. 10. Dolomite crystals with well-developed orthorhombic shape (at central right), sparse spherical cells of bacteria, and a quartz crystal. Dolomite crystals (left) are aggregated to form a compact mass. 11-13. Bacteria-induced pyritization (sun-like pyrite discs). 11. Stereomicrophotograph of a large pyrite disc (about 1.5 cm in diameter). 12. SEM image of disc surface (particular), showing a large amount of spherical cells, progressively smaller form center to periphery. This arrangement is associated to bacteria colonies. 13. Small pyrite disc, yellow/orange, with elliptical to dumb bell shaped bacteria bodies arranged in a short chain.

 figure 7