Articles

Print Email

Constraints on the timescale of animal evolutionary history

Michael J. Benton, Philip C. J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther

Plain Language Abstract

Dating the tree of life is a basic requirement for much of evolutionary biology. There is ongoing debate about how best to do this; the key problem is that the oldest fossils of any group are always younger than the time of origin of the group. We follow recent recommendations to take care that the selected oldest fossil truly belongs to the group in question, and then to specify the evidence for this as well as the best estimated geological age. Here we present 86 key calibrations for animal phylogeny, ranging from the root of animals to the last common ancestor of humans. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2012 international time scale indicates a minimum age of 318 Ma.

Resumen en Español

Constricciones en la escala de tiempo de la historia evolutiva de los animales

La datación del árbol de la vida es una actividad clave en biología evolutiva. Las tasas de evolución son fundamentales para casi todos los modelos y procesos evolutivos. Las tasas necesitan edades. Hay un gran debate sobre las formas más adecuadas y razonables para la datación del árbol de la vida, y el trabajo reciente ha puesto de relieve algunas confusiones y complejidades que se pueden evitar. Ya sea que los árboles filogenéticos se fechen después de que se han establecido, o como parte del proceso de establecimiento de los árboles, los profesionales necesitan saber las calibraciones que deben usar. Hacemos hincapié en la importancia de identificar los fósiles corona (no los troncales), los niveles de confianza en su atribución al grupo corona, la precisión cronoestratigráfica más actualizada, la primacía de la formación geológica que los contiene y los intervalos de confianza asimétricos. Presentamos calibraciones para 88 nodos clave a lo largo de la filogenia de los animales, que van desde la base de los Metazoa hasta el último ancestro común de Homo sapiens. Se requiere una especial y constante atención a los detalles: por ejemplo, la clásica edad para ave-mamífero (base del grupo corona de Amniota) a menudo se ha indicado en 310-315 Ma; la international time scale de 2012 indica una edad mínima de 318 Ma.

PALABRAS CLAVE: filogenia; calibración; animales; Metazoa; aves; mamíferos

Traducción: Enrique Peñalver

Résumé en Français

Contraintes sur l'échelle de temps de l'histoire de l'évolution animale

La datation de l'arbre de vie est une entreprise de base en biologie évolutive. Les taux de l'évolution sont fondamentaux pour presque tous les modèles et processus évolutifs. Les taux ont besoin de dates. Il y a beaucoup de débat sur les moyens les plus appropriés et raisonnables pour dater l'arbre de vie, et des travaux récents ont mis en évidence certaines confusions et des complexités qui peuvent être évités. Que les arbres phylogénétiques soient datés après qu'ils ont été établis, ou dans le cadre du processus de constatation de l'arbre, les praticiens ont besoin de savoir quels étalonnages doit être utiliser. Nous soulignons l'importance d'identifier les fossiles couronnes (et non souches), les niveaux de confiance dans leur attribution à la couronne, la précision chronostratigraphique actuelle, la primauté de l'hôte de la formation géologique et les intervalles de confiance asymétriques. Nous présentons ici des étalonnages pour 88 nœuds clés dans la phylogénie des animaux, allant de la racine des métazoaires jusqu'au dernier ancêtre commun de l'Homo sapiens. Une attention aux détails est constamment nécessaire: par exemple, la date classique pour les oiseaux/mammifère (la base de la couronne pour Amniota) a souvent été donné comme étant 310-315 Ma; l'échelle de temps internationale de 2012 indique un âge minimum de 318 Ma.

MOTS-CLÉS: phylogénie; étalonnage; animaux; métazoaires; oiseaux; mammifères

Translator: Kenny J. Travouillon

Deutsche Zusammenfassung

Constraints auf die Zeitskala der Evolutionsgeschichte der Tiere

Den Baum des Lebens zu datieren ist ein Herzstück in der Evolutionsbiologie. Evolutionsraten sind fundamental für beinahe jedes Evolutionsmodell oder Evolutionsprozess. Raten brauchen Daten. Es wird viel über den geeignetsten und vernünftigsten Weg wie der Baum des Lebens datiert werden sollte diskutiert und bisherige Arbeiten haben einige Konfusionen und Komplexitäten aufgeworfen, die vermieden werden können. Ob phylogenetische Bäume nach ihrer Aufstellung datiert werden oder als Teil des Baumfindungsprozesses, die Fachleute müssen wissen welche Kalibrierungen sie gebrauchen müssen. Wir weisen auf die Wichtigkeit der Identifizierung von Kronen-(nicht Stamm-) Fossilien hin, Ebenen von Gewissheit über ihre Zuordnung zur Krone, aktuelle chronostratigrafische Präzision, die Vorrangstellung der beherbergenden geologischen Formation und asymmetrischer Konfidenzintervalle. Hier präsentieren wir Kalibrierungen für 88 Schlüsselknoten quer durch die Phylogenie der Tiere, von der Wurzel der Metazoa bis zum letzten gemeinsamen Vorfahren von Homo sapiens. Durchgehend ist eine erhöhte Aufmerksamkeit für Details gefordert: zum Beispiel wurde das klassische Vogel-Säugetier Datum (Basis der Kronengruppe Amniota) oft mit 310-315 Mill. Angegeben, die internationale Zeitskala von 2012 weist jedoch auf ein Minimum von 318 Mill. Jahren hin.

Schlüsselwörter: Phylogenie; Kalibrierung; Tiere; Metazoa; Vögel; Säugetiere

Translator: Eva Gebauer

Arabic

424 arab

Translator: Ashraf M.T. Elewa

 

 

FIGURE 1. Calibration diagram for metazoans.

figure1

FIGURE 2. Calibration diagram for deuterostomes, including basal chordates.

figure2

FIGURE 3. Calibration diagram for gnathostomes.

 figure3

FIGURE 4. Calibration diagram for actinopterygians (Chondrostei, Holostei).

figure4

FIGURE 5. Calibration diagram for actinopterygians (basal teleosts and Clupeocephala).

 figure5

FIGURE 6. Calibration diagram for actinopterygians (Acanthomorpha).

figure6
 

FIGURE 7. Calibration diagram for tetrapods.

figure7

FIGURE 8. Calibration diagram for amniotes.

figure8

FIGURE 9. Calibration diagram for birds.figure9

 

FIGURE 10. Calibration diagram for mammals, excluding Archonta. Euarchontoglires continued into Figure 11.

figure10

FIGURE 11. Calibration diagam for Archonta, including Primates. Other mammals continued in Figure 10.

figure11

 

 

bentonMichael J. Benton
School of Earth Sciences
University of Bristol
Bristol, BS8 1RJ
U.K.
This email address is being protected from spambots. You need JavaScript enabled to view it.

Mike Benton is interested in all aspects of the tree of life and macroevolution. He began to worry about the use of fossils in calibration in the 1980s, and continues this interest today, revelling in the fruitful partnership between paleobiology and phylogenomics. Mike has worked also on the Permo-Triassic mass extinction, the recovery of life in the Triassic, and the origin of dinosaurs. He is particularly keen about the new numerical comparative tools that explore character evolution across dated phylogenies. Mike founded the M.Sc. in Palaeobiology at the University of Bristol in 1996, and is very proud of the 300 students who have since graduated from that program, as well as his 60+ current and former Ph.D. students.

divider

donoghuePhilip C.J. Donoghue
School of Earth Sciences
University of Bristol
Bristol, BS8 1RJ
U.K.
This email address is being protected from spambots. You need JavaScript enabled to view it.

Phil Donoghue’s research is focussed on elucidating early vertebrate evolution, the evolution of animal phyla more generally. Phil has been an advocate for the role of molecular biology in palaeontology, and in forging a molecular palaeobiological approach to addressing the fundamental questions in palaeontological science. In addition to worrying about the use of fossil data in divergence time estimation, Phil is currently working on the evolution of microRNAs in plants and animals, and their role in effecting phenotypic evolution in these two great kingdoms of life.

 

divider

asherRobert J. Asher
Department of Zoology
University of Cambridge
Downing Street
Cambridge, CB2 3EJ
U.K.
This email address is being protected from spambots. You need JavaScript enabled to view it.

Robert Asher is Senior Lecturer and Curator of Vertebrates at the Museum of Zoology in Cambridge, UK. His research interests include development and constraint among southern placental mammals (Afrotheria and Xenarthra), the evolution of endemic African mammals, and the diversification of therian mammals.

 

divider

friedmanMatt Friedman
Department of Earth Sciences
University of Oxford
South Parks Road
Oxford, OX1 3AN
U.K.
This email address is being protected from spambots. You need JavaScript enabled to view it.

Matt Friedman is an Associate Professor of Palaeobiology in the Department of Earth Sciences and Tutor in Earth Sciences at St Hugh’s College, University of Oxford. His interests centre on the fossil record of fishes over their Phanerozoic history, with central goal of illuminating the origin of modern biodiversity. Patterns of diversification in major clades and the evolutionary assembly of key suites of anatomical features represent principal avenues of investigation. This research programme incorporates classical descriptive palaeontology and anatomy along with quantitative modeling, morphometry, divergence-time estimation, and ecomorphological inference.

divider

nearThomas J. Near
Department of Ecology and Evolutionary Biology
Yale University
P. O. Box 208106
165 Prospect Street
New Haven, Connecticut 06520-8106
U.S.A.
This email address is being protected from spambots. You need JavaScript enabled to view it.

Tom Near is an associate professor of Ecology & Evolutionary Biology and an associate curator of the Yale University Peabody Museum of Natural History. His research is focused on developing and using phylogenetic hypotheses and information from the fossil record to study the evolutionary biology of ray-finned fishes. He has published on detailed phylogenetic analyses of Antarctic notothenioids and North American endemic darters, using time-calibrated phylogenies to studying adaptive radiation and the geography of speciation. Recent studies have been directed towards the phylogeny and patterns of lineage diversification among all major lineages of ray-finned fishes.

 

divider

vintherJakob Vinther
School of Earth Sciences
University of Bristol
Bristol, BS8 1RJ
U.K.
This email address is being protected from spambots. You need JavaScript enabled to view it.

Jakob Vinther is a lecturer in macroevolution at the University of Bristol and a recent graduate of Yale University. His work spans the study of evolution in invertebrates, using fossils and molecular phylogenetics (Molecular paleobiology), and exceptionally preserved fossils for polarization of character evolution. He is working on several aspects of fossil preservation, taphonomy, in order to characterize fossils and what they preserve. His discovery of widespread fossil melanin and its use in reconstructing melanin-based color patterns has led to the first scientifically based colorized feathered dinosaurs.

 

divider