Articles

Print Email

Hadimopanella oezgueli Gedik, 1977: a palaeoscolecidan sclerite useless for taxonomic purposes

Tania Barragán, Jorge Esteve, Diego C. García-Bellido, Samuel Zamora, and J. Javier Álvaro

Plain Language Abstract

An assemblage of phosphatic sclerites belonging to the parataxon Hadimopanella oezgueli has been sampled in the Cantabrian Mountains, northern Spain. Hadimopanella oezgueli is a button-shaped structure that formed part of Cambrian palaeoscolecidan scleritomes. Several biometric and statistical analyses have been carried out in a representative number of H. oezgueli sclerites to differentiate different morphotypes. These have been compared with other occurrences of H. oezgueli from other parts of Gondwana and the Siberia Platform. The main conclusion is that, although the isolate sclerites of H. oezgueli display distinct morphological patterns, these morphs are useless for any (bio) taxonomic diagnosis of H.oezgueli-bearing palaeoscolecidan scleritomes. Etched sclerites have recorded distinct diagenetic processes, such as occlusion of primary porosity and secondary fissures by authigenic chlorites. Their palaeoecological distribution was controlled by patchy development of epibenthic multispecies clumps on shell (both carbonate and clayey) substrates.

Resumen en Español

Hadimopanella oezgueli Gedik, 1977: un esclerito de paleoscolécido no apropiado para propósitos taxonómicos

Se describe una nueva asociación de Hadimopanella oezgueli Gedik, 1977 del Caesaraugustiense medio (Cámbrico medio) del Miembro Genestosa (Formación Oville) en la Cordillera Cantábrica, norte de España. Los escleritos se encuentran desarticulados y muestran distintos procesos diagenéticos, con cloritas autigénicas rellenando la porosidad primaria y las fisuras secundarias. La distribución de escleritos fue controlada por el desarrollo desigual de agrupaciones de múltiples especies epibentónicas en sustratos arcillosos o de carbonato. Un análisis biométrico y estadístico conjunto en vistas dorsal y lateral de los escleritos desarticulados permite la caracterización de dos morfotipos distintos. Estos se comparan con otros escleritos de la especie H. oezgueli provenientes de otros márgenes de Gondwana y de la Plataforma Siberiana, y como resultado se ha podido identificar otro morfotipo. Se pueden extraer dos conclusiones principales: (i) diferentes escleritos ventrales del mismo escleritomo engloban diferentes morfotipos de esclerito y (ii) un mismo morfotipo de esclerito se encuentra en diferentes géneros y especies. Estos resultados apoyan la idea de que las características diagnósticas que caracterizan al parataxón H. oezgueli no deberían ser utilizadas para la clasificación (bio)taxonómica de escleritomos en paleoscolécidos.

Palabras clave: análisis biométrico; parataxonomía; tafonomía; Cámbrico; Gondwana

Traducción: Enrique Peñalver

Résumé en Français

Hadimopanella oezgueli Gedik, 1977: une sclérite paléoscolécidien taxonomiquement inutile

Un nouvel assemblage de Hadimopanella oezgueli Gedik 1977 est décrit à partir du membre Genestosa (Formation Oville) du Caesaraugustien moyen (Cambrien moyen), dans les montagnes Cantabriques, au nord de l'Espagne. Les sclérites se produisent désarticulées et exposent des processus diagénétiques distincts, avec des chlorites authigènes en occlusion de porosité primaire et de fissures secondaires. La distribution sclérite était contrôlé par le développement inégal des touffes épibenthiques multispécifiques sur les coquilles substrats (à la fois de carbonate et argileux). Une analyse conjointe biométrique et statistique, à la fois en vue dorsale et latérale des sclérites désarticulés, permet la caractérisation de deux morphotypes distincts. Ces résultats sont comparés avec d'autres occurrences de sclérites de H. oezgueli, provenant d'autres marges de Gondwana et de la plate-forme sibérienne, à la suite de laquelle, un autre morphotype est identifié. Deux principales conclusions peuvent être tirées: (i) différents sclérites à face de tronc ventrale d'un même scléritome comprennent différents morphotypes de sclérite et (ii) un morphotype de sclérite distinct se produit dans différents genres et espèces. Ces résultats soulignent l'idée que les traits diagnostic qui caractérisent le parataxon H. oezgueli ne doit pas être utilisé pour la classification (bio) taxonomique de scléritomes paléoscolécidien.

Mots-clés: analyse biométrique; parataxonomie; taphonomie; Cambrien; Gondwana

Translator: Kenny J. Travouillon

Deutsche Zusammenfassung

Hadimopanella oezgueli Gedik, 1977: ein paläoscolecider Sklerit, unbrauchbar für taxonomische Zwecke

Es wird eine neue Assemblage von Hadimopanella oezgueli Gedik, 1977 aus dem mittleren Teil des Ceasaraugustianums (mittleres Kambrium) des Genestosa Members (Oville Formation) aus dem kantabrischen Gebirge, nördliches Spanien beschrieben. Sklerite treten disartikuliert auf und zeigen einen bestimmten diagenetischen Prozess mit authigenen Chloriten die primäre Porosität und sekundäre Fissuren okkludieren. Die Skelritenverteilung wurde durch ungleichmäßige Bildung von epibenthischen Klumpen mehrere Arten auf Schalensubstraten (sowohl Karbonat als auch Ton) kontrolliert. Eine biometrische und statistische Analyse sowohl der dorsalen als auch der lateralen Ansicht der disartikulierten Sklerite ergab die Unterscheidung von zwei abgegrenzten Morphotypen. Diese wurden mit anderen Vorkommen von Skleriten von H. oezgueli von anderen Rändern der Gondwanischen und Siberischen Plattform verglichen und als Resultat wurde ein weiterer Morphotyp identifiziert. Es können zwei Hauptrückschlüsse gezogen werden: (i) verschiedene körperseitige Sklerite desselben Skleritoms bestehen aus verschiedenen Skleriten-Morphotypen und (ii) ein bestimmter Skleriten-Morphotyp tritt bei verschiedenen Gattungen und Arten auf. Diese Ergebnisse unterstreichen die Idee, dass die diagnostischen Kennzeichen welche das Parataxon H. oezgueli kennzeichnen, nicht zur (bio)taxonomischen Klassifizierung paläoscolecider Skleritome benutzt werden sollten.

SCHLÜSSELWÖRTER: biometrische Analyse; Parataxonomie; Taphonomie; Kambrium; Gondwana

Translator: Eva Gebauer

Arabic

495 arab

Translator: Ashraf M.T. Elewa

 

 

FIGURE 1. (1) Geological sketch of the Iberian Peninsula showing the setting of the Cantabrian Mountains. (2) Geological setting of the study area in Tanes, Cantabrian Mountains. (3) Stratigraphic log of the lower-middle Cambrian transition in the Cantabrian Mountains.

figure1

FIGURE 2. Principal parameters measured in dorsal (1) and lateral (2) views of Hadimopanella oezgueli sclerites from the Genestosa Member. Abbreviations: largest / shortest diameter of outline sclerite (Dmax/Dmin), middle surface (d´max/d´min) and tuberculated surface (dmax/dmin); height of marginal brim (h1), middle surface (h2), and tuberculated surface (h3); slope of marginal brim (α1), middle surface (α2), and tuberculated surface (α3); radius base (r).

figure2

FIGURE 3. (1) Diameter frequency histogram (maximum diameter of outer surface, D max) of dorsal-view sclerites (n=33). (2) Height frequency histogram (from base to the tubercle tip) of lateral-view sclerites (n=36).

figure3

FIGURE 4. (1) Cluster diagram of dorsal-(1) and lateral-view (2) sclerites; morphotypes A1, A2, B1, and B2 are identified in (1), whereas no morphotypes can be recognized in (2).

figure4

FIGURE 5. (1 to 16) SEM photographs of Hadimopanella oezgueli Gedik, 1977 sclerites from the Genestosa Member, middle Caesaraugustan. (1-2) Morphotype A1; (3, 6-7, 10) Morphotype A2; (11) Morphotype B1; (9, 14-16) Morpthotype. B2. (4-5, 8, 12-13) Lateral-view of sclerites; scale bars for dorsal views equal 50 µm and for lateral views scale bars equal 100 µm (except no. 13 =50µm). Illustrated specimens are housed in the Instituto Geológico y Minero de España (IGME: MGM prefix), Spain: from MGM 1118K to MGM 1133K.

figure5

FIGURE 6. (1) Principal-coordinates diagram of dorsal-view sclerites from the Genestosa Member compared with other occurrences of Hadimopanella oezgueli Gedik, 1977 from Gondwana and Siberia. (2) Principal-coordinates diagram of lateral-view sclerites from the Genestosa Member with indication of “ Hadimopanella knappologica ”-type sclerites.

figure6

FIGURE 7. (1-3) Dorsal views of sclerites with eroded tubercles; only specimen 2 preserves its original marginal brim. Scale bars equal 50 µm (MGM 1134K to MGM 1136K).

figure7

FIGURE 8. Fig. (1) Honey-comb arrangement of chlorites on the top of a sclerite (detail of Figure 5.11) MGM 1128K. (2) Chlorites embedded in the apatite (ap) framework of a corroded sclerite (arrowed) with diagenetic crystals of pyrite (py) and chlorite (ch), MGM 1104K. (3) Complete sclerite, MGM 1137K. (4) BSE analysis of previous sclerite with chlorite arrangement marking porous and fissured areas. (5). Lateral section of sclerite showing fissure network (arrowed), MGM 1138K. (6) BSE analysis of previous sclerite with chlorites occluding the internal fissure network. Scale bars: 1-2 equal 20 µm; 3-4 equal 100 µm; 5 equals 40 µm; 6 equals 60 µm.

figure8

 

barraganTania Barragán
Centro de Astrobiología (CSIC/INTA)
Ctra. de Torrejón a Ajalvir km 4
28850 Torrejón de Ardoz
Spain
This email address is being protected from spambots. You need JavaScript enabled to view it.

Tania Barragán is a Phd student from Centre of Astrobiology in Madrid (Spain). She graduated in Geology at the University of Salamanca in 2007.

divider

esteveJorge Esteve
Centre of Biology, Earth and Environmental Sciences
University of West Bohemia at Plzeň
30619 Plzeň
Czech Republic
This email address is being protected from spambots. You need JavaScript enabled to view it.

Jorge Esteve is Research Associate of Palaeontology (2014) at the West Bohemia University in Pilsen, Czech Republic. He graduated with a BSc (2005) and MsC (Hons) (2007) from Universidad Complutense de Madrid, Spain and PhD (2011) from Universidad de Zaragoza in Spain. He had a Young International Fellowship (2012-2013) from the Chinese Academy of Sciences to work at the Nanjing Institute of Geology and Paleontology in Nanjing, China. His main research deals with palaeobiology of Cambrian trilobites from Spain, China, Czech Republic and Morocco.

divider

bellidoDiego C. García-Bellido
Environment Institute
School of Earth & Environmental Sciences
University of Adelaide
Adelaide, SA 5005
Australia
This email address is being protected from spambots. You need JavaScript enabled to view it.

Diego Garcia-Bellido is an ARC Future Fellow at the University of Adelaide. He studies early animal taxonomical diversity, functional morphology and phylogenetic relationships through the record of Cambrian and Ordovician Lagerstätten. He graduated in Biology-Zoology (Univ. Complutense, Madrid 1995) and received a PhD in Biology (Univ. Complutense, Madrid 2002) for his work on the Palaeozoic Porifera from the Iberian Peninsula. His first contact with Cambrian soft-bodied fossils was in 1994 (University of Cambridge), excavating at the Burgess Shale (British Columbia) with the Royal Ontario Museum-Toronto between 1995 and 2000. He has worked at the ROM (2003-2004), the Spanish Research Council-CSIC (2005-2012) and, since 2013, at the University of Adelaide in collaboration with the South Australian Museum in excavating and studying the early Cambrian Emu Bay Shale Lagerstätte in Kangaroo Island and the Ediacara biota of the Flinders Ranges.

divider

zamoraSamuel Zamora
Instituto Geológico y Minero de España
c/ Manuel Lasala
44 - 9º B
50006 Zaragoza
Spain
This email address is being protected from spambots. You need JavaScript enabled to view it.

Samuel Zamora is a 5-years Ramón y Cajal researcher at the Spanish Geological Survey (IGME). He is a specialist on the early evolutionary history of echinoderms. He completed his Ph.D. in 2009 at the University of Zaragoza (Spain) base on Cambrian echinoderm faunas from North Spain and he spent later two years post-Doc at the Natural History Museum (London) and one year at the Smithsonian Institution (Washington DC). He has published extensively on the morphology and a phylogenetic relationship of a broad range of Cambrian and Ordovician echinoderms and is currently researching the origins of the echinoderm body plan and the extrinsic and intrinsic factors that drove the early diversification of echinoderms.

divider

alvaroJ. Javier Álvaro
Centro de Astrobiología (CSIC/INTA)
Ctra. de Torrejón a Ajalvir km 4
28850 Torrejón de Ardoz
Spain
This email address is being protected from spambots. You need JavaScript enabled to view it.

J. Javier Álvaro works on Neoproterozoic and Early Palaeozoic microbial communities, sedimentology and shelly benthic communities. He got a PhD from the University of Zaragoza (Spain) in 1994. As assistant professor in the University of Lille I (1999-2004; France), he participated in the development of the Department “Palaeozoic Palaeontology and Palaeogeography”. In Centre of Astrobiology, he is participating in several projects focused on Precambrian and Cambrian extremophile environments.

divider

 

 

APPENDIX 1. Absolute measures of Hadimopanella oezgueli dorsal-view sclerites from the Genestosa Member (PDF only).

APPENDIX 2. Absolute measures of Hadimopanella oezgueli dorsal-view sclerites from other published papers (PDF only).

APPENDIX 3. Dorsal relationships used in the establishment of morphotypes of Hadimopanella oezgueli from the Genestosa Member and other occurrences from published reports.

 

Diameter relation

Diameter base surface

Diameter tuberculated surface

Eccentric deviation (ed)

Feature of tubercles

Dorsal name

Dme / dme

Dme-d'me/D

d'-d/D

Dmax / Dmin

dmax / dmin

ed/dmax

nºtubercles/dme

ø largest tubercle / ø tip

ø smallest tubercle / ø tip

ø largest tubercle/ ø smallest tubercle

HD-18-01

1.991

0.247

0.251

1.036

1.125

0.006

0.114

2.160

2.906

1.705

HD-3-01

1.390

0.146

0.135

1.050

1.235

0.090

0.129

4.460

3.215

1.631

HD-2-01

1.471

0.143

0.177

1.055

1.181

0.084

0.113

4.069

2.132

2.092

HD-34-01

1.839

0.196

0.261

1.042

1.294

0.103

0.000

3.712

2.208

2.157

HD-33-01

1.681

0.187

0.218

1.022

1.120

0.097

0.129

2.187

2.550

2.047

HD-5-01

2.088

0.276

0.245

1.111

1.182

0.238

0.098

6.153

4.300

1.951

HD-7-01

1.748

0.195

0.233

1.094

1.131

0.122

0.135

7.036

4.047

1.156

HD-21-01

1.460

0.096

0.219

1.046

1.082

0.082

0.311

1.602

HD-22-01

1.621

0.194

0.189

1.147

1.015

0.094

0.181

1.270

H1-01

1.558

0.155

0.203

1.109

1.057

0.083

0.117

2.800

H26-01

1.589

0.154

0.216

1.026

1.142

0.090

0.108

2.581

HD-9-01

1.644

0.164

0.228

1.086

1.196

0.069

0.124

1.581

HD-29-01

1.612

0.088

0.291

1.079

1.183

0.065

1.376

HD-12-01

1.524

0.100

0.244

1.028

1.236

0.052

0.175

1.967

H25-01

1.690

0.108

0.300

1.187

1.133

0.220

1.455

HD-10-01

1.607

0.167

0.211

1.091

1.210

0.089

HD-28-01

2.177

0.169

0.372

1.181

1.081

0.143

0.178

1.486

HD-24-01

1.780

0.123

0.315

1.089

1.100

0.128

0.136

1.766

HD-32-01

1.672

0.151

0.251

1.254

1.029

0.127

1.005

HD-39-01

1.672

0.113

0.163

1.254

1.029

0.126

1.070

HD-36-01

1.781

0.203

0.235

1.091

1.143

0.044

2.180

HD-1-01

1.681

0.082

0.323

1.109

1.038

0.048

HD-35-01

1.888

0.279

0.192

1.042

1.059

0.041

0.084

2.698

4.380

1.512

HD-14-01

1.369

0.065

0.205

1.187

1.267

0.032

0.084

4.002

2.415

1.141

HD-17-01

2.241

0.299

0.255

1.038

1.039

0.052

0.096

4.639

2.549

2.854

HD-15-01

1.576

0.121

0.245

1.047

1.158

0.055

0.107

6.631

3.336

2.369

H27-01

1.611

0.216

0.164

1.016

1.381

0.052

3.258

1.611

4.403

HD-4-01

2.404

0.314

0.270

1.074

1.172

0.049

0.128

2.264

1.756

1.658

HD-19-01

2.019

0.267

0.238

1.119

1.131

0.057

0.107

2.799

4.080

1.305

H10-01

1.880

0.283

0.185

1.034

1.023

0.062

0.146

2.614

2.177

1.471

H19-01

2.302

0.334

0.231

1.091

1.145

0.062

0.120

3.130

2.408

1.756

HD-41-01

1.999

0.242

0.258

1.074

1.150

0.022

HD-40-01

2.080

0.203

0.317

1.121

1.103

0.017

0.320

1.222

Mila1

1.690

0.221

0.187

1.086

1.113

0.114

0.032

5.645

Mila2

1.577

0.129

0.236

1.024

1.185

0.056

0.110

2.665

4.732

1.348

Mila3

1.960

0.256

0.234

1.063

1.083

0.026

0.057

4.167

3.231

1.216

Mila4

2.153

0.221

0.314

1.115

1.134

0.288

0.071

3.573

2.609

1.128

Mila5

1.959

0.247

0.243

1.123

1.090

0.140

0.106

3.583

Mila6

1.651

0.326

0.069

1.051

1.105

0.165

0.106

2.677

3.705

1.226

Mila7

1.665

0.209

0.190

1.032

1.087

0.136

0.049

2.688

Mila8

1.820

0.289

0.162

1.027

1.096

0.174

0.065

5.354

Mila9

1.730

0.294

0.129

1.161

1.034

0.240

0.065

3.379

Mila10

1.812

0.280

0.168

1.320

1.197

0.237

0.054

3.873

Mila11

1.678

0.111

0.293

1.110

1.113

0.122

0.128

8.379

Mila12

1.602

0.251

0.125

1.044

1.104

0.160

0.099

3.896

Ülgase-Kallavere1

1.566

0.158

0.203

1.093

1.050

0.164

0.024

1.338

Ülgase-Kallavere2

1.652

0.153

0.242

1.086

1.074

0.041

0.054

2.247

Ülgase-Kallavere3

1.563

0.197

0.163

1.192

1.281

0.118

0.044

4.057

2.829

1.230

Ülgase-Kallavere4

1.524

0.186

0.157

1.059

1.047

0.075

0.049

4.907

Ülgase-Kallavere5

1.398

0.217

0.068

1.081

1.038

0.078

0.058

1.291

Láncara1

1.657

0.192

0.205

1.019

1.156

0.110

0.119

2.362

1.766

1.994

Láncara2

1.680

0.191

0.214

1.123

1.025

0.023

0.089

2.991

2.214

1.770

Láncara3

1.865

0.194

0.270

1.022

1.127

0.071

0.112

0.000

1.664

Láncara4

1.715

0.226

0.191

1.159

1.007

0.055

0.100

3.332

1.976

1.431

Láncara5

1.613

0.197

0.184

1.173

1.014

0.012

0.060

2.220

3.406

1.197

Láncara6

1.639

0.262

0.128

1.153

1.089

0.067

0.020

4.227

3.677

1.048

Láncara7

1.425

0.169

0.129

1.067

1.148

0.078

0.052

3.548

Láncara8

1.291

0.110

0.115

1.455

1.367

0.087

0.059

4.441

2.636

1.508

Láncara9

1.681

0.249

0.156

1.260

1.110

0.060

0.102

4.083

Sinsk S1

1.557

0.218

0.139

1.126

1.054

0.126

0.178

6.582

5.881

1.506

Sinsk S2

1.314

0.121

0.118

1.094

1.054

0.079

0.289

8.637

Sinsk S3

1.387

0.089

0.190

1.059

1.063

0.086

0.316

3.258

Sinsk S4

1.874

0.203

0.263

1.208

1.265

0.255

0.189

6.426

Sinsk S5

1.949

0.189

0.298

1.110

1.105

0.026

0.214

4.521

Korrelasyonunda1

1.681

0.224

0.181

1.069

1.104

0.044

0.043

1.550

Sinsk Ps1

1.804

0.312

-0.134

1.037

1.093

0.727

0.190

11.080

4.179

1.157

Sinsk Ps2

1.565

0.273

-0.088

1.039

1.263

0.095

0.257

6.338

7.454

1.804

Sinks Ps3

1.817

0.227

-0.223

1.009

1.073

2.192

0.146

2.898

Monastery Greek1

0.745

0.185

0.168

1.142

1.224

0.110

0.437

2.164

2.630

1.200

Monastery Greek2

0.563

0.956

0.000

1.098

1.096

0.019

0.163

2.463

Campo Pisano

1.068

0.318

0.179

1.071

1.070

0.272

0.208

3.171

2.090

1.654

Çal Tepe 1

0.637

0.158

0.028

1.139

1.058

0.012

2.166

Çal Tepe 2

0.886

0.158

0.243

1.103

1.095

0.014

0.180

2.308

Çal Tepe 3

0.896

0.242

0.167

1.116

1.065

0.076

0.115

2.851

 

APPENDIX 4. Absolute measures of Hadimopanella oezgueli lateral-view sclerites from the Genestosa Member.

Lateral name

ht

h

h1

h2

h3

d

r

α1

α2

α3

H38-01

55.671

40.523

11.654

12.266

16.603

138.81

69.405

30.583

48.013

50.711

H29-01

73.037

61.696

16.302

13.993

31.401

139.681

69.8405

56.564

52.5

39.145

H13-01

51.809

42.183

9.01

17.998

15.175

129.416

64.708

36.858

36.417

44.36

H32-01

60.671

37.346

13.414

9.935

13.997

140.827

70.4135

47.757

36.031

H21-01

64.839

47.617

11.099

20.12

16.398

135.281

67.6405

38.515

35.538

40.343

H9-01

73.868

45.555

13.951

11.46

20.144

123.545

61.7725

45.335

40.432

34.695

H30-01

79.495

65.154

17.624

22.536

24.994

173.338

86.669

48.93

42.057

69.391

H26-01

78.061

69.614

22.138

14.271

33.205

153.826

76.913

46.494

55.717

70.925

H25-01

63.85

49.856

16.617

33.239

146.276

73.138

44.66

42.272

H6-01

66.935

57.088

19.515

16.602

20.971

173.887

86.9435

40.173

40.024

61.048

H19-01

72.589

52.088

16.398

14.357

21.333

149.498

74.749

48.013

39.601

60.893

H23-01

74.558

62.272

18.843

14.351

29.078

158.569

79.2845

43.615

44.298

54.083

H1-01

78.031

55.29

29.089

11.042

15.159

168.057

84.0285

33.174

31.589

51.099

H20-01

48.381

37.305

14.348

7.374

15.583

166.076

83.038

31.19

26.453

30.41

H12-01

59.917

43.498

20.521

11.898

11.079

135.442

67.721

48.197

34.088

53.797

H3-01

65.257

55.409

18.876

18.888

17.645

176.173

88.0865

37.81

39.168

61.948

H34-01

66.006

54.938

16.813

21.312

16.813

161.535

80.7675

43.027

40.772

66.46

H31-01

65.6525

58.436

24.717

11.609

22.11

142.863

71.4315

50.964

46.97

60.962

H8-01

76.307

61.14

23.393

16.374

21.373

164.154

82.077

48.166

50.606

61.126

H10-01

48.783

48.783

17.217

5.74

25.826

158.711

79.3555

40.692

31.834

33.532

H28-01

51.557

38.738

11.067

27.671

115.131

57.5655

45.533

25.37

56.872

H24-01

76.744

58.684

20.144

8.574

29.966

156.628

78.314

39.983

34.176

34.176

H18-01

50.885

34.471

12.72

4.922

16.829

121.056

60.528

42.663

42.879

76.061

HP-3-01

60.786

50.08

18.916

12.896

18.268

150.822

75.411

49.7

48.747

41.174

HP-4-01

76.969

54.951

21.444

33.507

174.356

87.178

32.295

51.289

HP-5-01

53.484

39.921

10.492

9.085

20.344

132.091

66.0455

38.074

65.486

HP-6-01

53.961

42.709

10.486

5.964

26.259

114.546

57.273

47.85

69.391

HP-7-01

69.182

52.483

15.339

16.526

20.618

151.992

75.996

39.245

53.051

62.488

HP-9-01

48.564

34.506

9.713

8.928

15.865

117.862

58.931

35.191

32.475

63.258

HP-10-01

51.82

40.049

11.26

9.59

19.199

136.146

68.073

32.262

62.79

74.363

HP-11-01

52.927

41.419

9.974

10.096

21.349

113.808

56.904

46.231

47.778

68.091

HP-12-01

61.112

43.366

17.431

6.8

19.135

151.663

75.8315

28.955

40.488

56.066

HP-13-01

76.903

57.684

17.772

12.534

27.378

180.253

90.1265

36.457

38.412

50.236

HP-14-01

66.193

52.13

17.699

13.458

20.973

154.712

77.356

44.412

35.578

43.832

HP-15-01

47.047

35.028

8.185

13.032

13.811

116.204

58.102

50.528

44.297

67.655

HP-16-01

74.815

57.051

13.669

13.28

30.102

152.205

76.1025

42.346

47.041

62.045

 

APPENDIX 5. Lateral relationships of Hadimopanella oezgueli from the Genestosa Member used for statistical analyses.

 

Height relationship

Radius relationship

Slope relationship

Features tubercles

Nombre pefil

h/h1

h/h2

h/h3

r/h

tg α1

tg α2

tg α3

base/tip

H38-01

3.477

3.304

2.441

1.713

0.591

1.111

1.222

0.324

H29-01

3.785

4.409

1.965

1.132

1.515

1.303

0.814

0.242

H13-01

4.682

2.344

2.780

1.534

0.750

0.738

0.978

0.407

H32-01

2.784

3.759

2.668

1.885

1.101

0.727

0.308

H21-01

4.290

2.367

2.904

1.421

0.796

0.714

0.849

0.600

H9-01

3.265

3.975

2.261

1.356

1.012

0.852

0.692

0.318

H30-01

3.697

2.891

2.607

1.330

1.148

0.902

2.659

0.318

H26-01

3.145

4.878

2.096

1.105

1.054

1.467

2.892

0.121

H25-01

3.000

0.000

1.500

1.467

0.988

0.000

0.909

0.180

H6-01

2.925

3.439

2.722

1.523

0.844

0.840

1.808

0.412

H19-01

3.176

3.628

2.442

1.435

1.111

0.827

1.796

0.195

H23-01

3.305

4.339

2.142

1.273

0.953

0.976

1.381

0.201

H1-01

1.901

5.007

3.647

1.520

0.654

0.615

1.239

0.311

H20-01

2.600

5.059

2.394

2.226

0.605

0.498

0.587

0.277

H12-01

2.120

3.656

3.926

1.557

1.118

0.677

1.366

0.425

H3-01

2.935

2.934

3.140

1.590

0.776

0.815

1.877

0.379

H34-01

3.268

2.578

3.268

1.470

0.933

0.862

2.295

0.537

H31-01

2.364

5.034

2.643

1.222

1.233

1.071

1.801

0.279

H8-01

2.614

3.734

2.861

1.342

1.117

1.218

1.813

0.215

H10-01

2.833

8.499

1.889

1.627

0.860

0.621

0.663

0.192

H28-01

3.500

0.000

1.400

1.486

1.019

0.474

1.532

0.178

H24-01

2.913

6.844

1.958

1.335

0.839

0.679

0.679

0.311

H18-01

2.710

7.003

2.048

1.756

0.922

0.929

4.029

0.309

HP-3-01

2.647

3.883

2.741

1.506

1.179

1.140

0.875

0.395

HP-4-01

2.563

0.000

1.640

1.586

0.632

0.000

1.248

0.091

HP-5-01

3.805

4.394

1.962

1.654

0.783

0.000

2.193

0.227

HP-6-01

4.073

7.161

1.626

1.341

1.105

0.000

2.659

0.154

HP-7-01

3.422

3.176

2.545

1.448

0.817

1.330

1.920

0.172

HP-9-01

3.553

3.865

2.175

1.708

0.705

0.636

1.985

0.172

HP-10-01

3.557

4.176

2.086

1.700

0.631

1.945

3.573

0.214

HP-11-01

4.153

4.103

1.940

1.374

1.044

1.102

2.486

0.212

HP-12-01

2.488

6.377

2.266

1.749

0.553

0.854

1.486

0.336

HP-13-01

3.246

4.602

2.107

1.562

0.739

0.793

1.202

0.385

HP-14-01

2.945

3.874

2.486

1.484

0.980

0.715

0.960

0.201

HP-15-01

4.280

2.688

2.536

1.659

1.214

0.976

2.433

0.257

HP-16-01

4.174

4.296

1.895

1.334

0.911

1.074

1.884

0.141

 

APPENDIX 6. Histogram values: (1) maximum diameters measured in dorsal view sclerites; (2) heights measured in lateral view sclerites.

Dorsal name

Major diameter
(Dmax) µm

 

Lateral name

height
µm

HD-18-01

142.337

 

H38-01

40.523

HD-3-01

154.42

 

H29-01

61.696

HD-2-01

120.553

 

H13-01

42.183

HD-34-01

153.179

 

H32-01

37.346

HD-33-01

145.331

 

H21-01

47.617

HD-5-01

157.005

 

H9-01

45.555

HD-7-01

162.709

 

H30-01

65.154

HD-21-01

134.524

 

H26-01

69.614

HD-22-01

124.077

 

H25-01

49.856

H1-01

153.76

 

H6-01

57.088

H26-01

133.944

 

H19-01

52.088

HD-9-01

137.934

 

H23-01

62.272

HD-29-01

138.783

 

H1-01

55.29

HD-12-01

167.938

 

H20-01

37.305

H25-01

137.6

 

H12-01

43.498

HD-10-01

152.557

 

H3-01

55.409

HD-28-01

159.201

 

H34-01

54.938

HD-24-01

136.114

 

H31-01

58.436

HD-32-01

154.497

 

H8-01

61.14

HD-39-01

164.546

 

H10-01

48.783

HD-36-01

133.911

 

H28-01

38.738

HD-1-01

145.65

 

H24-01

58.684

HD-35-01

182.392

 

H18-01

34.471

HD-14-01

123.954

 

HP-3-01

50.08

HD-17-01

190.261

 

HP-4-01

54.951

HD-15-01

180.714

 

HP-5-01

39.921

H27-01

146.566

 

HP-6-01

42.709

HD-4-01

194.65

 

HP-7-01

52.483

HD-19-01

179.787

 

HP-9-01

34.506

H10-01

144.161

 

HP-10-01

40.049

H19-01

199.513

 

HP-11-01

41.419

HD-41-01

172.599

 

HP-12-01

43.366

HD-40-01

178.53

 

HP-13-01

57.684

 

 

 

HP-14-01

52.13

 

 

 

HP-15-01

35.028

 

 

 

HP-16-01

57.051