Articles

Print Email

Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation

Juha Saarinen, Jussi Eronen, Mikael Fortelius, Heikki Seppä, and Adrian M. Lister

Plain Language Abstract

We analysed diets based on tooth wear shapes and body size based on limb bone measures of fossilised large herbivorous hoofed mammals (ungulates) from fossil localities of Britain and Germany, ca. 700 000 years ago to present. Our aim was to compare the dietary and body size information of the mammals with vegetation patterns of the localities. The vegetation patterns were analysed from pollen associated with the fossil mammal assemblages. We found that tooth wear -based signals of diet abrasiveness (so called mesowear values) are in general higher in localities with open vegetation for most of the species, which indicates that the ungulates changed their diet depending on available food resources. Individual body sizes of ungulate species with relatively small group sizes in closed environments today (e.g., red deer) tend to have been larger in open environments in the past. Some social species (e.g., bison and horse) show an opposite body size pattern: they tend to be on average smaller in open environments. A possible explanation for these findings is that available food resources and population density are contibuting factors in determining the fine-scale variations in body size of ungulate species.

Resumen en Español

Patrones de la dieta y la masa corporal de los grandes ungulados del Pleistoceno de Europa Occidental, y su relación con la vegetación

La dieta de los ungulados puede variar dependiendo de las diferencias en la vegetación, y sus tamaños corporales se ven afectados por un conjunto complejo de variables ecológicas y fisiológicas. Se analizan las paleocomunidades de ungulados británicas y alemanas del Pleistoceno Medio y Tardío para comprobar si existen correlaciones significativas de la dieta y el tamaño corporal de las especies de ungulados con la apertura de la vegetación. También evaluamos el papel de las interacciones interespecíficas en la masa corporal y la dieta de las especies de ungulados. Utilizamos el análisis de mesodesgaste dental para los análisis de la dieta y ecuaciones de regresión para estimar la masa corporal a partir de las medidas del esqueleto. Los resultados muestran una correlación entre el mesodesgaste en los ungulados y los porcentajes de polen no arbóreo de las localidades, pero hay marcadas diferencias entre las especies. Las masas corporales de los rinocerontes (Rhinocerotidae) y ciervos (Cervidae) son en promedio más altas en entornos abiertos, mientras que el uro (Bos primigenius) no muestra una clara relación del tamaño del cuerpo con las condiciones de la vegetación, y el bisonte (Bison spp.) y los caballos salvajes (Equus ferus) tienen en promedio un menor tamaño medio en los ecosistemas más abiertos, posiblemente debido a las altas densidades de población y la concomitante limitación de recursos. Es evidente que no es simple la correlación del tamaño corporal y la apertura de vegetación y es probable que refleje los diversos efectos de la densidad de población, adaptaciones ecológicas y las condiciones ambientales sobre el tamaño del cuerpo de diferentes especies.

Palabras clave: mesodesgaste; masa corporal; comunidades de ungulados; apertura de vegetación; Pleistoceno

Traducción: Enrique Peñalver (Sociedad Española de Paleontología)

Résumé en Français

Régimes alimentaires et masses corporelles des grands ongulés du Pléistocène de l'Europe occidentale : structure et relations avec la végétation

Les régimes alimentaires des ongulés varient d'après les différences de végétation, et leur taille corporelle est influencée par un ensemble complexe de variables écologiques et physiologiques. Dans cet article, nous analysons les paléocommunautés d'ongulés de Grande-Bretagne et d'Allemagne au Pléistocène moyen et récent, afin de tester s'il y a des corrélations significatives du régime alimentaire et de la taille corporelle avec le degré d'ouverture de la végétation. Nous évaluons également le rôle des interactions interspécifiques sur le régime alimentaire et la masse corporelle des espèces d'ongulés. Nous utilisons les méso-usures pour les analyses de régimes alimentaires et des équations de régression pour estimer la masse corporelle à partir de mesures du squelette. Les résultats montrent une corrélation entre les méso-usures des ongulés et les pourcentages de pollens non arborés des localités, mais des différences nettes existent entre espèces. Les masses corporelles des rhinocéros (Rhinocerotidae) et des cerfs (Cervidae) sont en moyenne plus élevées dans les environnements ouverts, alors que les aurochs (Bos primigenius) ne montrent pas de connexion claire entre leur taille corporelle et les conditions de végétation. Les bisons (Bison spp.) et les chevaux (Equus ferus) ont majoritairement une taille moyenne plus faible dans les environnements plus ouverts, potentiellement à cause de densités de populations élevées et des limites en ressources qui en découlent. Il est évident que la corrélation entre la taille corporelle et le degré d'ouverture de la végétation n'est pas directe et reflète probablement les effets variés de la densité de population, des adaptations écologiques, et des conditions environnementales sur la taille corporelle des différentes espèces.

Mots-clés : méso-usures ; masse corporelle ; communautés d'ongulés ; degré d'ouverture de la végétation ; Pléistocène

Translator: Antoine Souron

Deutsche Zusammenfassung

Ernährungsmuster und Körpergewicht großer Ungulaten aus dem Pleistozän von Westeuropa und ihre Beziehung zur Vegetation

Die Fressgewohnheiten von Ungulaten können je nach unterschiedlicher Vegetation variieren und ihr Körpergewicht wird durch eine Reihe von komplexen ökologischen und physiologischen Variablen beeinflusst. Hier analysieren wir mittel-und spätpliozäne britische und deutsche Ungulaten-Gemeinschaften um zu testen, ob ein signifikanter Zusammenhang zwischen den Fressgewohnheiten und dem Körpergewicht von Ungulaten-Arten und der Beschaffenheit der Vegetation besteht. Weiterhin evaluieren wir die Rolle von interspezifischen Interaktionen auf die Fressgewohnheiten und das Körpergewicht von Ungulaten-Arten. Zur Analyse der Fressgewohnheiten nutzen wir Mesowear und Regressionsgleichungen zur Kalkulierung des Körpergewichts aus Skelettmaßen. Die Ergebnisse zeigen einen Zusammenhang zwischen der Mesowear von Ungulaten und den Prozentwerten von nicht-arborealen Pollen aus diesen Fundstellen, allerdings treten deutliche Unterschiede zwischen den Arten auf. Das Körpergewicht von Nashörnern (Rhinocerotidae) und Hirschen (Cervidae) ist in offener Umgebung im Durchschnitt höher, wohingegen Auerochsen (Bos primigenius) keine klaren Zusammenhang zwischen Körpergewicht und Vegetationsbeschaffenheit zeigen und Bisons (Bison spp.) und Wildpferde (Equus ferus) im Durchschnitt in offeneren Ökosystemen eine kleinere mittlere Größe haben, möglicherweise wegen hoher Populationsdichten und daraus resultierenden Ressourcenbeschränkungen. Es wird deutlich, dass eine Korrelation von Körpergewicht und Vegetationsbeschaffenheit nicht eindeutig ist, und dass das Gewicht der jeweiligen Arten eher durch die variierenden Populationsdichten, ökologische Adaptionen und die Umweltbedingungen reflektiert wird.

Schlüsselwörter: Mesowear; Körpergewicht; Ungulaten-Gemeinschaften; Vegetations-beschaffenheit; Pleistozän

Translator: Eva Gebauer

Arabic

Translator: Ashraf M.T. Elewa

 

 

TABLE 1. Localities used in this study with their ages, species analysed and NAP %.

Locality Country Age Species analysed in this study Locality used in community-level analyses Minimum NAP % Maximum NAP % Mean NAP % Reference for age Reference for pollen record
Star Carr UK MIS 1 B. primigenius, C. elaphus, C. capreolus, A. alces yes 15.0 42.0 25.3 Innes et al., 2011; Penkman et al., 2011 Clark, 1954
Late-glacial localities (pollen zone III) Ireland MIS 2, Allerød-interstadial M. giganteus yes 45.0 93.0 74.8 Watts, 1997; Barnosky, 1986 Watts, 1977
Gough's Cave UK MIS 2, Bølling interstadial (GI-1e) E. ferus, C. elaphus yes 89.0 94.0 91.7 Currant and Jacobi, 2001; Jacobi and Higham 2009 Leroi-Gourhan, 1986
Whitemoor Haye UK MIS 3 C. antiquitatis no 82.3 96.7 89.5 Schreve et al., 2013 Schreve et al., 2013
Kent's Cavern (cave earth) UK MIS 3 E. ferus, B. priscus, C. elaphus, R. tarandus, M. giganteus, C. antiquitatis no       Bocherens and Fogel, 1995; Currant and Jacobi, 2001  
Isleworth UK MIS 5a-d B. priscus, R. tarandus no 86.9 94.0 90.4 Penkman et al., 2011; Bates et al., 2014 Kerney et al., 1982
Wretton (Devensian strata) UK MIS 5a-d B. priscus, R. tarandus no 80.0 98.0 89.0 Lewin and Gibbard, 2010 West et al., 1974
Villa Seckendorff Germany MIS 5a-d E. ferus, E. hydruntinus, B. priscus, B. primigenius, C. elaphus, M. giganteus, C. antiquitatis no       Ziegler, 1996  
Aufhausener Höhle Germany Last glacial (Würmian) E. ferus, C. antiquitatis no       Kley, 1966  
Upper Rhine valley localities: Brühl (Koller), Otterstadt, Edingen, Ketsch, Lampertheim in der Tanne Germany Late Pleistocene B. primigenius, C. elaphus, C. capreolus, D. dama, A. alces, S. kirchbergensis, C. antiquitatis no       Koenigswald and Beug, 1988; Dietrich and Rathgeber, 2012  
Reilingen Germany MIS 5e? S. hemitoechus no       Ziegler and Dean, 1998  
Taubach Germany MIS 5e E. ferus, B. priscus, C. elaphus, . capreolus, S. kirchbergensis no       Brunnacker et al., 1983; van Kolfschoten, 2000  
Barrington UK MIS 5e B. priscus, B. primigenius, C. elaphus, D. dama, S. hemitoechus yes 89.0 94.0 91.5 Ashton et al., 2011 Gibbard and Stuart, 1982
Joint Mitnor Cave UK MIS 5e B. priscus, C. elaphus, D. dama, S. hemitoechus no       Ashton et al., 2011  
Kirkdale Cave UK MIS 5e B. primigenius no       Ashton et al., 2011  
Hoe Grange quarry UK MIS 5e B. priscus, B. primigenius, D. dama no       Ashton et al., 2011  
Brundon UK MIS 7 E. ferus, B. priscus, B. primigenius no       Ashton et al., 2011  
Ilford UK MIS 7 E. ferus, B. primigenius, C. elaphus, C. capreolus, S. kirchbergensis, S. hemitoechus yes 18.0 72.0 44.6 Ashton et al., 2011; Penkman et al., 2011 West et al., 1964
Crayford UK MIS 7 E. ferus, B. primigenius, C. elaphus, S. kirchbergensis, C. antiquitatis no       Ashton et al., 2011; Penkman et al., 2011  
Aveley (zone II B) UK MIS 7 B. primigenius no 9.2 57.9 28.2 Ashton et al., 2011; Penkman et al., 2011 West, 1969
Grays Thurrock UK MIS 9 E. ferus, B. primigenius, C. elaphus, D. dama, M. giganteus, S. kirchbergensis yes 12.0 26.0 19.2 Ashton et al., 2011; Penkman et al., 2011 Gibbard, 1994
Steinheim a.d. Murr, Grube Sammet Germany MIS 10 E. ferus, B. priscus, B. primigenius, C. elaphus, M. giganteus yes       Schreve and Bridgland, 2002  
Steinheim a.d. Murr, Grube Sigrist Germany MIS 11 E. ferus, C. elaphus no       Schreve and Bridgland, 2002  
Clacton UK MIS 11 E. ferus, B. primigenius, C. elaphus, D. dama, S. hemitoechus yes 5.0 67.0 27.3 Schreve, 2001; Penkman et al., 2011 Bridgland et al., 1999
Swanscombe (lower loam) UK MIS 11 E. ferus, B. priscus, B. primigenius, D. dama, M. giganteus, S. hemitoechus yes 11.0 66.0 31.6 Schreve, 2001; Penkman et al., 2011 Conway, 1996
Hoxne UK MIS 11 E. ferus, C. elaphus no 12.1 37.3 23.5 Schreve, 2000; Penkman et al., 2011 Mullenders, 1993
Frankenbacher Sande Germany MIS 11 E. mosbachensis, B. schoetensacki no       Van Asperen, 2010  
Boxgrove (horizons 5 and 4 c) UK MIS 13 E. ferus, B. schoetensacki, C. elaphus, D. roberti, Megacerini sp., S. hundsheimensis, S. cf. megarhinus yes 5.0 12.0 8.5 Roberts and Parfitt, 1999 Roberts, 1986
Pakefield (pollen zone Cr II) UK MIS 15 or MIS 17 B. schoetensacki, S. hundsheimensis no 20.0 57.0 33.3 Penkman et al., 2011 West, 1980
Mauer Germany MIS 15 E. mosbachensis, B. schoetensacki, C. elaphus, C. latifrons, S. hundsheimensis yes 2.7 55.0 25.7 Wagner et al., 2011 Urban, 1992
Süssenborn Germany MIS 16 E. sussenbornensis, E. altidens, B. schoetensacki, C. elaphus, C. sussenbornensis, C. latifrons, Megacerini sp., S. hundsheimensis no       Kahlke et al., 2010; Kahlke and Kaiser, 2011  
Voigtstedt Germany MIS 17 C. elaphus, C. sussenbornensis, Megacerini sp., S. hundsheimensis yes 1.0 22.0 11.5 Maul et al., 2007; Kahlke and Kaiser, 2011 Erd, 1970
West Runton UK MIS 17 Equus sp., B. schoetensacki, C. elaphus, D. cf. roberti, Capreolus sp., Megacerini sp., S. hundsheimensis yes 5.0 55.0 44.6 Stuart and Lister, 2010; Maul and Parfitt, 2010 Field and Peglar, 2010


TABLE 2.
Mean mesowear and body mass values with sample sizes (n) and standard deviations (SD), and minimum, maximum and mean environmental NAP % of the most abundant ungulate species across all localities in which they occur. The species are arranged according to the mean NAP % of their environments from lowest (top) to highest (bottom).

Genus

sp.

n (mesowear)

Mean mesowear value

SD (mesowear)

Mesowear value range (of locality means)

n (body mass)

Mean body mass (kg)

Body mass range (kg)

Minimum NAP%

Maximum NAP%

Mean NAP%

Alces alces 8 1.00 0 1.00 35 433 202 - 642 12 42 22
Capreolus capreolus 22 1.07 0.08 1.00 - 1.17 53 35 22 - 51 12 42 23
Stephanorhinus hundsheimensis 51 1.13 0.22 1.00 - 1.22 63 1348 999 - 1691 1 57 25
Cervalces latifrons 13 1.11 0.16 1.00 - 1.23 19 914 593 - 1479 3 55 26
Bison schoetensacki 22 1.46 0.04 1.42 - 1.50 78 835 314 - 1313 3 57 28
Stephanorhinus kirchbergensis 52 1.03 0.07 1.00 - 1.17 25 1844 1381 - 2538 3 72 30
Cervus elaphus 122 1.16 0.27 1.03 - 1.38 253 211 77 - 475 1 94 36
Dama dama 42 1.12 0.08 1.04 - 1.17 124 87 39 - 145 5 94 39
Equus ferus 174 2.35 0.29 2.00 - 2.45 462 499 301 - 883 5 94 40
Bos primigenius 79 1.44 0.05 1.35 - 1.50 209 1121 389 - 2010 5 94 0
Stephanorhinus hemitoechus 53 1.29 0.27 1.19 - 1.44 25 1522 1181 - 2384 5 94 49
Megaloceros giganteus 48 1.38 0.22 1.10 - 1.69 91 687 329 - 1228 11 94 54
Bison priscus 73 1.45 0.21 1.38 - 1.83 264 1011 363 - 1930 11 94 76
Coelodonta antiquitatis 35 2.21 0.65 1.33 - 2.53 28 1905 1038 - 2958 82 97 90
Rangifer tarandus 17 1.09 0.19 1.09 68 129 43 - 255 80 98 90


TABLE 3.
Correlations of mean mesowear value of different ungulate groupings with NAP % in the localities. + = significant positive correlation, no = no correlation. Values indicating significant correlations are emboldened.

    Nr. of localities Correlation R2 p
All ungulates Min. NAP 11 + 0.47 0.02
  Max. NAP 11 + 0.67 0.002
  Mean NAP 11 + 0.6 0.005
Equidae Min. NAP 8 no 0.09 0.46
  Max. NAP 8 no 0.16 0.33
  Mean NAP 9 no 0.09 0.47
Bovidae ( Bos and Bison) Min. NAP 7 no 0.11 0.46
  Max. NAP 7 + 0.62 0.03
  Mean NAP 8 no 0.24 0.25
Cervidae Min. NAP 8 (+) 0.44 0.05
  Max. NAP 8 + 0.54 0.02
  Mean NAP 9 + 0.58 0.02
Rhinocerotidae Min. NAP 8 + 0.59 0.02
  Max. NAP 8 + 0.93 <0.0001
  Mean NAP 8 + 0.82 0.0008


TABLE 4.
Means comparison of mesowear values of species in the presence/absence of other key ungulate species by paired Wilcoxon tests. M = mean mesowear value. Test statistics (Z and p-values) of the means differences are given for each presence/absence pair for each species (statistically significant values are emboldened). The species presence/absence data per locality were obtained from: Arnold-Bemrose and Newton (1905), Adam (1954), Lister (1984), Ziegler (1996), Schreve (1997), van Kolfschoten (2000) and Currant and Jacobi (2001).

  Cervus elaphus Equus ferus Bos primigenius Bison priscus Dama dama Stephanorhinus hemitoechus
  M   M   M   M   M   M  
A. alces present 1.26 Z = 2.14; p = 0.03 2.36 Z = 0;

p = 1

1.35 Z = -2.24; p = 0.02 1.34 Z = -1.51, p = 0.13 1.04 Z = -1.67; p = 0.10    
A. alces absent 1.10 2.35 1.48 1.45 1.17    
C. capreolus present 1.26 Z = 1.46; p = 0.14 2.23 Z = -1.98; p = 0.05 1.44 Z = -1.10; p = 0.27 1.38 Z = -0.97; p = 0.33 1.12 Z = -0.52; p = 0.60 1.25 Z = -1.00; p = 0.32
C. capreolus absent 1.14 2.40 1.50 1.46 1.17 1.33
S. kirchbergensis present 1.18 Z = 0.55; p = 0.58 2.27 Z = -1.24; p = 0.22 1.45 Z = -0.56; p = 0.57 1.38 Z = -1.07; p = 0.28 1.13 Z = -0.22; p = 0.83 1.25 Z = -1.00; p = 0.32
S. kirchbergensis absent 1.14 2.38 1.48 1.46 1.14 1.33
Dama dama present 1.14 Z = -1.62; p = 0.10 2.23 Z = -1.99; p = 0.05 1.41 Z = -2.05; p = 0.04 1.43 Z = -0.64; p = 0.52     1.31 Z = 1.17; p = 0.24
Dama dama absent 1.28 2.40 1.50 1.45     1.19
Cervus elaphus present     2.36 Z = 1.02; p = 0.31     1.43 Z = -0.19; p = 0.85        
Cervus elaphus absent     2.28     1.44        
Bos primigenius present 1.24 Z = 1.19; p = 0.24 2.33 Z = -0.81; p = 0.42     1.43 Z = -0.28; p = 0.78 1.12 Z = -0.52; p = 0.60 1.30 Z = 0.49; p = 0.62
Bos primigenius absent 1.14 2.42     1.43 1.17 1.25
S. hemitoechus present 1.11 Z = -0.72; p = 0.47 2.24 Z = -1.89; p = 0.06 1.45 Z = -0.59; p = 0.55 1.43 Z = -0.64; p = 0.52        
S. hemitoechus absent 1.19 2.41 1.50 1.45        
M. giganteus present 1.15 Z = -1.57; p = 0.12 2.37 Z = 1.32; p = 0.19 1.46 Z = 0.24; p = 0.81 1.43 Z = -0.19; p = 0.85     1.30 Z = 0.78; p = 0.44
M. giganteus absent 1.32 2.28 1.44 1.44     1.20
R. tarandus present 1.19 Z = 0.29; p = 0.67 2.41 Z = 0.88; p = 0.38 1.50 Z = 0.58; p = 0.57 1.44 Z = 0.30; p = 0.77        
R. tarandus absent 1.18 2.32 1.45 1.43        
B. priscus present 1.15 Z = -1.32; p = 0.19 2.40 Z = 2.93; p = 0.003 1.48 Z = 1.00; p = 0.32     1.19 Z = 1.79; p = 0.07    
B. priscus absent 1.27 2.19 1.44     1.06    
E. ferus present 1.19 Z = 0.35; p = 0.72     1.46 Z = 0.24; p = 0.81 1.41 Z = -0.46; p = 0.64 1.13 Z = -0.22; p = 0.83 1.25 Z = -1.00; p = 0.32
E. ferus absent 1.20     1.44 1.46 1.14 1.33
C. antiquitatis present 1.2 Z = 1.02; p = 0.31 2.41 Z = 2.18; p = 0.03 1.50 Z = -0.56; p = 0.57 1.45 Z = 0.64; p = 0.52        
C. antiquitatis absent 1.12 2.23 1.44 1.43        

 

TABLE 5. Pairwise correlations (correlation coefficients from pairwise comparisons) of mean body mass between species, and (bottom three rows) correlation coefficients of species’ mean body mass with minimum, maximum and mean NAP percentages in localities. Correlations based on comparisons of three or more pairs are shown. The pairwise correlations and their p-values are given in Appendix 5. Statistically significant (p <0.05) correlations are emboldened.

  B. priscus B. scho. B. prim. E. ferus A. alces C. latifrons C. elaphus D. dama M. giganteus C. capreolus R. tarandus S. kirch. S. hem. S. hund. C. antiq.
Bison priscus     0.65 -0.67     0.3 -0.71 0.52   -0.99   0.99    
Bison schoet.           -0.78 -0.35             0.37  
Bos primigenius 0.65     0.62     -0.08 0.18   -0.4     0.89    
Equus ferus -0.67   0.62       -0.64 0.22 -0.21            
Alces alces                              
Cervalces latifrons   -0.78         0.76                
Cervus elaphus   -0.35 -0.08 -0.64   0.76   -0.07 -0.91 -0.98     -0.75 -0.41  
Dama dama -0.71     0.22     -0.07           -0.93    
Meg. giganteus 0.52     -0.21     -0.91                
Capreolus capreolus     -0.4       -0.98                
Rangifer tarandus -0.99                            
Steph. kirch.                              
Steph. hemit. 0.99   0.89       -0.75 -0.93              
Steph. hund.   0.37         -0.41                
Coelodonta antiquitatis                              
Minimum NAP % -0.06 -0.64 0.1 -0.89     0.55 -0.91 1       0.56 -0.88  
Maximum NAP % -0.22 -0.58 0.17 -0.52     0.46 -0.63 0.81       0.66 -0.06  
Mean NAP % -0.11 -0.82 0.18 -0.78     0.61 -0.82 0.92       0.66 0.07  
 

FIGURE 1. The localities included in this study from England and Ireland (1.1) and from Germany (1.2). The maps (1.1) and (1.2) are not to the same scale.

 figure1

FIGURE 2. Linear regressions of mean mesowear values of the ungulates in the local palaeocommunities and NAP % in the pollen records of the localities with (1.1.) minimum NAP %, (1.2.) maximum NAP % and (1.3.) mean NAP %.

figure2 

FIGURE 3. Linear regressions of mean mesowear values of deer (Cervidae) from localities with pollen records, and minimum, maximum and mean NAP % in the pollen records of the localities. Numbers of specimens per locality are given in brackets after the locality names. For Megacerini, the samples from Grays Thurrock and Ireland are Megaloceros giganteus ; those from Boxgrove, West Runton and Voigstedt combine Praemegaceros verticornis, P. dawkinsi and Megaloceros savini. For Dama the specimens from Boxgrove are D. cf. roberti ; others are D. dama.

 figure3

FIGURE 4. Linear regressions of mean mesowear values of Bovidae, Equus ferus and Rhinocerotidae from localities with pollen records, and minimum, maximum and mean NAP % in the pollen records of the localities. Numbers of specimens per locality are given in brackets after the locality names. Bison from Mauer is B. schoetensacki ; from other localities, B. priscus.

 figure4

FIGURE 5. Linear regressions of body mass (kg) of deer (Cervidae) from localities with pollen records, and minimum, maximum and mean NAP % in the pollen records of the localities. Each point represents an individual specimen. Numbers of specimens per locality are given in brackets after the locality names.

 

 

FIGURE 6. Body mass of Cervus elaphus, Dama spp. and Capreolus capreolus in Middle and Late Pleistocene localities from Britain and Germany. The localities are arranged from oldest (right) to youngest (left) estimated age. The middle line in the diamonds marks the mean body mass and the upper and lower lines mark the 95% confidence limits of the mean. Diamonds that do not overlap at the 95% lines indicate statistically significant difference between populations. The central line in the figures indicates the combined mean body mass of all the populations. The individual body mass estimates of each specimen are shown as data points. Sample sizes are given in brackets for each locality.

 figure6

FIGURE 7. Body mass of Megacerini, Rangifer tarandus and Alcini in Middle and Pleistocene localities from Britain and Germany. For explanation of graph, see Figure 6.

 figure7

FIGURE 8. Body mass of Rhinocerotidae from Pleistocene localities of Britain and Germany. For explanation of graph, see Figure 6.

 figure8

FIGURE 9. Linear regressions of body mass (kg) of Bovidae and Equus ferus/mosbachensis from localities with pollen records, and minimum, maximum and mean NAP % in the pollen records of the localities. Each point represents an individual specimen. Numbers of specimens per each locality are given in brackets after the locality names.

figure9 

FIGURE 10. Body mass of bovine Bovidae (Bison priscus and Bos primigenius) from Middle and Late Pleistocene localities of Britain and Germany. For explanation of graph, see Figure 6.

 figure10

FIGURE 11. Body mass of caballine Equidae (Equus ferus and E. mosbachensis) in Middle and Late Pleistocene localities from Britain and Germany. For explanation of graph, see Figure 6.

 figure11

 

APPENDIX 1.

Statistical tests of univariate mesowear values calculated by our method on the original mesowear data for modern ungulate species (Fortelius and Solounias, 2000). The hierarchical clustering analysis (A 1.1) yielded similar results to the ones shown by Fortelius and Solounias (2000), clustering the species in relatively consistent and biologically meaningful dietary groups, with extreme browsers at one end and extreme grazers at the other. Typical diets in each cluster are named according to those of the dominant species in each cluster. MABRA = ‘”minute abraded brachydonts”; a special case of small ungulates which feed on fruit seeds and acquire a more abrasion-dominated mesowear signal than other browsers because of cusp tip-crushing wear (none of these were present in the Pleistocene of Europe). Discriminant analysis (A 1.2), following the methodology of Fortelius and Solounias (2000) showed that our univariate mesowear values still classify ca. 65 % of all extant ungulate species (excluding MABRA) and 85 % of extant ungulate species “typical of their dietary class” (see Fortelius and Solounias, 2000) correctly into the broad “traditional” dietary classes of “browsers”, “mixed-feeders” and “grazers”.

appendix1

APPENDIX 2.

Mean mesowear values of species in localities, with standard errors.

Locality B. pri. B. scho.  Bo. prim.   E. fer. E. mosb. A. alces C. lat. Ce. elap.  Dama sp.   Meg. gig.  Meg. sp. Cap. sp. R.
tar.
S. kir. S. hem.  S. hun. Co.
ant.
Star Carr           1±0   1.38±0.13       1±0          
Ireland (late-glacial)                   1.69±0.25              
Gough’s Cave       2.39±0.15       1.17±0.1                  
Kent's Cavern 1.38±0.1     2.43±0.08       1.29±0.1   1.44±

0.06

    1.03± 0.04       2.53±

0.15

Isleworth                                  
Wretton 1.44±0.06                                
Barrington 1.43±0.1                           1.37±

0.06

   
Joint Mitnor Cave 1.43±0.06             1.1±

0.04

1.17±0.08           1.25±

0.08

   
Kirkdale Cave     1.5±0                            
Hoe Grange Quarry     1.44±0.06           1.1±

0.1

               
Brundon       2.4±

0.2

                         
Ilford     1.45±0.05 2.08±

0.21

                  1.17±

0.17

1.19±

0.09

   
Crayford     1.5±0 2.31±

0.19

                  1±0     2.33±

0.28

Aveley     1.5±0 2.55±0.14                          
Grays Thurrock     1.35±0.08 2.21±0.15       1.13±0.08 1.04±0.04 1.17±

0.17

      1.07±0.07      
Clacton     1.44±0.06 2.3±

0.2

                    1.2±

0.12

   
Swanscombe 1.42±0.06     2.29±

0.21

        1.17±0.09           1.44±0.06    
Hoxne       2.0±

0.15

                         
Boxgrove               1.03±0.03 1±0   1.3±

0.12

        1±0  
Pakefield                               1.17±

0.11

 
West Runton   1.5±0           1.13±0.08 1.1±

0.1

  1.2±

0.12

1±0          
Aufhausener Höhle       2.28±

0.12

                        1.33±

0.1

Villa Seckendorff 1.83±0.33   1.5±0 2.44±

0.1

      1±0                  
Taubach       2.25±

0.25

      1.20±0.07       1.17±

0.1

         
Steinheim (Sammet) 1.5±0   1.44±0.06 2.45±

0.1

          1.1±

0.1

             
Frankenbacher Sande         2.57±0.07                        
Mauer   1.42±0.08     2.07±

0.23

  1±0 1.07±0.07               1.14±0.06  
Süssenborn   1.46±0.04         1.23±0.08 1.19±0.06     1.41±

0.1

        1.22±0.06  
Voigtstedt                     1.11±

0.06

1±0       1±0  
Brühl (Koller), Upper Rhine                           1.13±

0.13

     

APPENDIX 3.

Mean body mass (kg) of all species in localities, with standard errors.

Locality B.
pri.
B. scho.  Bo. prim. E.
fer.
E. mosb.  A.
alces
 
C.
lat.
Ce.
ela.
Dama sp. Meg. gig. Meg. sp. Cap.
sp.
R.
tar.
S.
kir.
S.
hem.
S. hun. Co.
ant.
Star Carr     795.9

±48.5

    400

±18

  193

±12.8

      36.1

±2.5

         
Ireland (late-glacial)                   634

±17.8

             
Gough’s Cave       354.3

±24.5

      308.3

±37.1

                 
Kent's Cavern 1168.6

±57.6

    472.7

±14.5

      291.8

±9

  684.7

±38.7

    95

±5.7

      1934.8

±182.8

Isleworth 714.9

±35.5

                703.7

±126

    146.8

±9.4

       
Wretton 664.3

±30.8

                      144.5

±4.8

       
Barrington 1000.3

±34

  1173.3

±93.9

        252.4

±11.7

59.9

±5.6

          1534

±61.6

   
Joint Mitnor Cave 1008.8

±82.8

            196.6

±9.2

69.5

±2.5

          1618.6

±36.2

   
Kirkdale cave     1226.1

±30.6

                           
Hoe Grange quarry 1100

±65.5

  1114.2

±45

          80.6

±2.4

               
Brundon 939.6

±61.6

  1056.8

±121.6

524.8

±16.3

      201

±9.7

                 
Ilford     1294.4

±30.9

562.3

±16.5

      212.3

±9.9

      35

±4.5

    1537.9

±143.7

   
Crayford     1351.9

±119.8

522.1

±16.6

      179.6

±8.7

                 
Aveley     1212.3

±123.4

                           
Grays Thurrock     1274.1

±105.2

530.6

±0

      157.9

±13.6

98.5

±4.7

               
Clacton     1142.8

±54.1

        153.3

±5.2

91.9

±4

               
Swanscombe 836.2

±94

  1032.2

±88.3

512.3

±17.4

        113.2

±3.1

590.7

±60.3

        1208.5

±49.1

   
Hoxne       472.8

±38.3

      157.4

±13.6

                 
Boxgrove   931.6

±75.3

          218

±22.4

                 
Pakefield   747.7

±46.6

            120.7

±12.5

  301

±43.8

        1220.4

±54

 
West Runton   751.3

±48.9

          254.7

±53.6

105.3

±16.6

  440

±61.8

        1427.3

±264

 
Aufhausener Höhle       458.3

±10.7

                        1873.2

±130.7

Villa Seckendorff 1003

±70.6

  1074.2

±45.5

502.4

±9.6

      275.1

±30.2

  784.4

±59.4

            2043.2

±26.7

Taubach 1274.8

±49.6

    499.2

±45.2

                  1811.4

±69.9

     
Steinheim (Sammet) 1155.1

±26

    493.2

±13

      201.5

±11

  861.1

±63.1

             
Frankenbacher Sande   865.6

±78.2

    594.2

±22.3

  784.4

±63.7

169.8

±14.4

                 
Mauer   936.5

±56

    569.5

±25.2

  801.4

±58

252.5

±12.3

              1405.2

±68

 
Süssenborn   811.1

±29.7

        999

±64.8

284.7

±15.9

    464.5

±25.5

42

±2.8

      1268.2

±79.5

 
Voigtstedt               244.2

±25.2

    453.3

±14.7

35.7

±2.1

      1363.1

±33.2

 
Brühl (Koller), Upper Rhine     981.1

±27.1

    497.8

±43.5

  170.7

±8.8

59.1

±8.8

    39.1

±1.1

  1941.6

±64.6

     

APPENDIX 4.

Pairwise correlation analyses of mean body mass (kg) and mean mesowear of species in localities. Indications of correlation in brackets refer to R2 values, which do not have significant p-values, and ones without brackets refer to to significant correlations. + = positive, ̶ = negative, none = no correlation.

Genus species Correlation DF R 2 p
Equus ferus none 11 0.001 0.91
Stephanorhinus hemitoechus (-) 3 0.58 0.23
Stephanorhinus hundsheimensis (-) 4 0.32 0.32
Megaloceros giganteus (-) 2 0.96 0.13
Dama dama none 3 0.001 0.9
Coelodonta antiquitatis (+) 2 0.99 0.07
Cervus elaphus none 8 0.05 0.54
Bos primigenius none 7 0.01 0.81
Bison schoetensacki - 3 0.98 0.001
Bison priscus none 5 0.01 0.85

APPENDIX 5.

Pairwise correlation analyses of mean body mass (kg) between the species (upper rows) and with minimum, maximum and mean NAP % (lower rows) across localities. Count = number of pairs compared. Statistically significant p-values are emboldened.

Variable by Variable Correlation coefficient Count p
Alces alces Bos primigenius 1  2  
Bos primigenius Bison priscus 0.65 5 0.24
Capreolus capreolus Alces alces 1 2  
Capreolus capreolus Bos primigenius -0.40    3 0.74
Capreolus capreolus Cervus elaphus -0.98 3 0.14
Capreolus capreolus Equus ferus -1 2  
Cervalces latifrons Bison schoetensacki -0.78 3 0.43
Cervus elaphus Alces alces -1 2  
Cervus elaphus Bison priscus 0.30 6 0.57
Cervus elaphus Bison schoetensacki -0.35 5 0.57
Cervus elaphus Bos primigenius -0.08 9 0.84
Cervus elaphus Cervalces latifrons 0.76 3 0.45
Cervus elaphus Equus ferus -0.64 11 0.03
Coelodonta antiquitatis Bison priscus -1 2  
Coelodonta antiquitatis Cervus elaphus -1 2  
Coelodonta antiquitatis Equus ferus 1.00 3 0.02
Coelodonta antiquitatis Megaloceros giganteus 1 2  
Dama dama Bison priscus -0.71 4 0.29
Dama dama Bos primigenius 0.18 6 0.73
Dama dama Cervus elaphus -0.07 6 0.89
Dama dama Equus ferus 0.22 3 0.86
Equus ferus Bison priscus -0.67 6 0.15
Equus ferus Bos primigenius 0.62 7 0.14
Megaloceros giganteus Bison priscus 0.52 5 0.37
Megaloceros giganteus Bos primigenius 1 2  
Megaloceros giganteus Cervus elaphus -0.91 3 0.27
Megaloceros giganteus Equus ferus -0.21 4 0.79
Rangifer tarandus Bison priscus -0.99 3 0.08
Rangifer tarandus Megaloceros giganteus 1 2  
Stephanorhinus hemitoechus Bison priscus 0.99 3 0.10
Stephanorhinus hemitoechus Bos primigenius 0.89 3 0.30
Stephanorhinus hemitoechus Cervus elaphus -0.75 3 0.46
Stephanorhinus hemitoechus Dama dama -0.93 3 0.23
Stephanorhinus hemitoechus Equus ferus 1 2  
Stephanorhinus hundsheimensis Bison schoetensacki 0.37 5 0.53
Stephanorhinus hundsheimensis Cervalces latifrons -1 2  
Stephanorhinus hundsheimensis Cervus elaphus -0.41 5 0.49
Stephanorhinus kirchbergensis Equus ferus 1 2  
Minimum NAP % Bison priscus -0.06 4 0.94
Minimum NAP % Bison schoetensacki -0.64 4 0.36
Minimum NAP % Bos primigenius 0.10 7 0.84
Minimum NAP % Capreolus capreolus -1 2  
Minimum NAP % Cervus elaphus 0.55 11 0.08
Minimum NAP % Dama dama -0.91 5 0.03
Minimum NAP % Equus ferus -0.89 5 0.04
Minimum NAP % Megaloceros giganteus 1.00 3 0.05
Minimum NAP % Rangifer tarandus 1 2  
Minimum NAP % Stephanorhinus hemitoechus 0.56 3 0.62
Minimum NAP % Stephanorhinus hundsheimensis -0.88 5 0.05
Maximum NAP % Bison priscus -0.22 4 0.78
Maximum NAP % Bison schoetensacki -0.58 4 0.42
Maximum NAP % Bos primigenius 0.17 7 0.71
Maximum NAP % Capreolus capreolus -1 2  
Maximum NAP % Cervus elaphus 0.46 11 0.16
Maximum NAP % Dama dama -0.63 5 0.26
Maximum NAP % Equus ferus -0.52 5 0.37
Maximum NAP % Megaloceros giganteus 0.81 3 0.40
Maximum NAP % Minimum NAP % 0.80 17 0.0001
Maximum NAP % Rangifer tarandus -1 2  
Maximum NAP % Stephanorhinus hemitoechus 0.66 3 0.54
Maximum NAP % Stephanorhinus hundsheimensis -0.06 5 0.92
Mean NAP % Bison priscus -0.11 4 0.89
Mean NAP % Bison schoetensacki -0.82 4 0.18
Mean NAP % Bos primigenius 0.18 7 0.70
Mean NAP % Capreolus capreolus -1 2  
Mean NAP % Cervus elaphus 0.61 11 0.05
Mean NAP % Dama dama -0.82 5 0.09
Mean NAP % Equus ferus -0.78 5 0.12
Mean NAP % Maximum NAP % 0.92 17 <0.0001
Mean NAP % Megaloceros giganteus 0.92 3 0.25
Mean NAP % Minimum NAP % 0.95 17 <0.0001
Mean NAP % Rangifer tarandus 1 2  
Mean NAP % Stephanorhinus hemitoechus 0.66 3 0.54
Mean NAP % Stephanorhinus hundsheimensis 0.07 5 0.91

APPENDIX 6.

Pairwise comparison by Wilcoxon tests of mean body mass of Cervus elaphus in localities. Negative Z values indicate smaller body size and positive values larger body size in the population marked in the first column compared to the one in the second column. Statistically significant p-values are emboldened.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Star Carr Grays Thurrock 6.04 3.28 1.84 0.07
Star Carr Brühl (Koller), Schlangenwinkel 6.77 3.71 1.82 0.07
Star Carr Ilford -5.93 3.66 -1.62 0.11
Star Carr Boxgrove -3.67 3.27 -1.12 0.26
Star Carr Crayford 3.42 3.24 1.06 0.29
Star Carr Edingen (Brühl), Edinger Ried 1.09 3.28 0.33 0.74
Star Carr Brundon -0.45 3.25 -0.14 0.89
Star Carr Joint Mitnor Cave 0.35 3.42 0.10 0.92
Star Carr Kent's Cavern -14.43 3.26 -4.43 <0.0001
Star Carr Clacton 10.92 3.46 3.15 0.0016
Star Carr Mauer -10.03 3.24 -3.09 0.0020
Star Carr Gough's Cave -10.35 3.43 -3.02 0.0025
Star Carr Barrington -8.71 3.59 -2.43 0.015
Gough’s Cave Boxgrove 3.77 2.10 1.79 0.07
Gough’s Cave Barrington 1.58 1.84 0.86 0.39
Gough’s Cave Clacton 10.87 3.30 3.29 0.0010
Gough’s Cave Brühl (Koller), Schlangenwinkel 12.40 3.93 3.15 0.0016
Gough’s Cave Crayford 6.53 2.33 2.80 0.0051
Gough’s Cave Edingen (Brühl), Edinger Ried 5.83 2.11 2.76 0.0058
Gough’s Cave Brundon 5.69 2.22 2.56 0.010
Kent's Cavern Gough’s Cave 0.29 2.57 0.11 0.91
Kent's Cavern Brühl (Koller), Schlangenwinkel 16.43 3.57 4.60 <0.0001
Kent's Cavern Clacton 13.93 3.18 4.38 <0.0001
Kent's Cavern Grays Thurrock 11.41 2.83 4.03 <0.0001
Kent's Cavern Ilford 14.27 3.49 4.09 <0.0001
Kent's Cavern Joint Mitnor Cave 12.66 3.11 4.07 <0.0001
Kent's Cavern Crayford 9.90 2.66 3.72 0.0002
Kent's Cavern Brundon 9.18 2.61 3.51 0.0004
Kent's Cavern Edingen (Brühl), Edinger Ried 8.88 2.58 3.44 0.0006
Kent's Cavern Boxgrove 5.61 2.58 2.18 0.030
Kent's Cavern Barrington 5.28 2.61 2.02 0.043
Villa Seckendorff Brundon 4.13 2.45 1.68 0.09
Villa Seckendorff Steinheim a.d. Murr, grube Sigrist 4.13 2.45 1.68 0.09
Villa Seckendorff Ilford 5.40 3.51 1.54 0.12
Villa Seckendorff Steinheim a.d. Murr, grube Sammet 4.43 3.07 1.44 0.15
Villa Seckendorff Boxgrove 3.30 2.40 1.38 0.17
Villa Seckendorff Gough’s Cave -2.18 2.33 -0.93 0.35
Villa Seckendorff Kent's Cavern -1.82 2.66 -0.68 0.49
Villa Seckendorff Süssenborn -1.01 2.66 -0.38 0.70
Villa Seckendorff Barrington 0.18 2.34 0.08 0.94
Villa Seckendorff Mauer 0.11 2.59 0.04 0.97
Villa Seckendorff Clacton 12.07 3.15 3.83 0.0001
Villa Seckendorff Brühl (Koller), Schlangenwinkel 10.88 3.60 3.03 0.0025
Villa Seckendorff Grays Thurrock 8.07 2.74 2.95 0.0032
Villa Seckendorff Crayford 6.22 2.52 2.47 0.013
Villa Seckendorff Edingen (Brühl), Edinger Ried 5.84 2.40 2.43 0.015
Villa Seckendorff Star Carr 7.42 3.24 2.29 0.022
Villa Seckendorff Joint Mitnor Cave 6.86 3.07 2.24 .025
Joint Mitnor Cave Crayford 3.73 3.07 1.22 0.2234
Joint Mitnor Cave Ilford -4.35 3.59 -1.21 0.2259
Joint Mitnor Cave Boxgrove -2.77 3.07 -0.90 0.3667
Joint Mitnor Cave Edingen (Brühl), Edinger Ried 2.36 3.07 0.77 0.4422
Joint Mitnor Cave Brundon -1.03 3.06 -0.34 0.7362
Joint Mitnor Cave Clacton 12.31 3.37 3.66 0.0003
Joint Mitnor Cave Gough’s Cave -9.06 3.18 -2.85 0.0044
Joint Mitnor Cave Barrington -7.66 3.31 -2.32 0.021
Joint Mitnor Cave Brühl (Koller), Schlangenwinkel 7.99 3.65 2.19 0.029
Joint Mitnor Cave Grays Thurrock 6.27 3.14 2.00 0.046
Brühl (Koller), Schlangenwinkel Boxgrove -6.87 3.69 -1.86 0.0627
Brühl (Koller), Schlangenwinkel Barrington -11.67 4.16 -2.81 0.0050
Brühl (Koller), Schlangenwinkel Brundon -7.24 3.63 -1.99 0.046
Edingen (Brühl), Edinger Ried Clacton 5.65 3.17 1.78 0.0753
Edingen (Brühl), Edinger Ried Boxgrove -2.57 2.23 -1.15 0.2491
Edingen (Brühl), Edinger Ried Brundon -2.54 2.31 -1.10 0.2716
Edingen (Brühl), Edinger Ried Brühl (Koller), Schlangenwinkel 2.45 3.69 0.66 0.5075
Edingen (Brühl), Edinger Ried Crayford -0.25 2.40 -0.11 0.9157
Edingen (Brühl), Edinger Ried Barrington -5.30 2.08 -2.55 0.011
Crayford Brundon -4.13 2.45 -1.68 0.0922
Crayford Boxgrove -3.30 2.40 -1.38 0.1682
Crayford Brühl (Koller), Schlangenwinkel 3.52 3.60 0.98 0.3274
Crayford Barrington -6.32 2.34 -2.70 0.0069
Crayford Clacton 7.82 3.15 2.48 0.013
Brundon Boxgrove -1.21 2.31 -0.52 0.60
Brundon Barrington -4.69 2.21 -2.12 0.034
Ilford Crayford 6.51 3.51 1.86 0.06
Ilford Edingen (Brühl), Edinger Ried 6.29 3.59 1.75 0.08
Ilford Barrington -6.10 4.02 -1.52 0.13
Ilford Brundon 2.50 3.54 0.71 0.48
Ilford Boxgrove 0.00 3.59 0.00 1
Ilford Clacton 13.31 3.63 3.67 0.0002
Ilford Brühl (Koller), Schlangenwinkel 10.52 3.83 2.75 0.0060
Ilford Grays Thurrock 9.49 3.50 2.71 0.0067
Ilford Gough’s Cave -9.16 3.81 -2.41 0.016
Grays Thurrock Boxgrove -5.09 2.67 -1.90 0.06
Grays Thurrock Crayford -2.43 2.74 -0.89 0.37
Grays Thurrock Edingen (Brühl), Edinger Ried -2.38 2.68 -0.89 0.37
Grays Thurrock Brühl (Koller), Schlangenwinkel -2.25 3.57 -0.63 0.53
Grays Thurrock Clacton 1.21 3.21 0.38 0.71
Grays Thurrock Gough’s Cave -8.08 2.69 -3.00 0.0027
Grays Thurrock Barrington -7.50 2.75 -2.73 0.0064
Grays Thurrock Brundon -5.52 2.70 -2.04 0.041
Steinheim a.d. Murr, grube Sammet Mauer -5.12 3.08 -1.66 0.10
Steinheim a.d. Murr, grube Sammet Joint Mitnor Cave 5.44 3.32 1.64 0.10
Steinheim a.d. Murr, grube Sammet Star Carr 5.55 3.42 1.62 0.10
Steinheim a.d. Murr, grube Sammet Brundon 3.38 3.06 1.10 0.27
Steinheim a.d. Murr, grube Sammet Barrington -3.59 3.31 -1.09 0.28
Steinheim a.d. Murr, grube Sammet Ilford 1.49 3.59 0.41 0.68
Steinheim a.d. Murr, grube Sammet Boxgrove 0.82 3.07 0.27 0.79
Steinheim a.d. Murr, grube Sammet Clacton 15.10 3.37 4.49 <0.0001
Steinheim a.d. Murr, grube Sammet Kent's Cavern -10.51 3.11 -3.38 0.0007
Steinheim a.d. Murr, grube Sammet Brühl (Koller), Schlangenwinkel 11.93 3.65 3.27 0.0011
Steinheim a.d. Murr, grube Sammet Grays Thurrock 9.41 3.14 2.99 0.0028
Steinheim a.d. Murr, grube Sammet Crayford 7.55 3.07 2.46 0.014
Steinheim a.d. Murr, grube Sammet Gough’s Cave -6.96 3.18 -2.19 0.029
Steinheim a.d. Murr, grube Sammet Edingen (Brühl), Edinger Ried 6.06 3.07 1.97 0.049
Steinheim a.d. Murr, grube Sigrist Grays Thurrock 5.10 2.70 1.89 0.06
Steinheim a.d. Murr, grube Sigrist Brühl (Koller), Schlangenwinkel 5.20 3.63 1.43 0.15
Steinheim a.d. Murr, grube Sigrist Steinheim a.d. Murr, grube Sammet -3.84 3.06 -1.26 0.21
Steinheim a.d. Murr, grube Sigrist Edingen (Brühl), Edinger Ried 2.54 2.31 1.10 0.27
Steinheim a.d. Murr, grube Sigrist Crayford 2.48 2.45 1.01 0.31
Steinheim a.d. Murr, grube Sigrist Ilford -3.11 3.54 -0.88 0.38
Steinheim a.d. Murr, grube Sigrist Boxgrove -0.94 2.31 -0.41 0.68
Steinheim a.d. Murr, grube Sigrist Joint Mitnor Cave 0.66 3.06 0.21 0.83
Steinheim a.d. Murr, grube Sigrist Star Carr 0.45 3.25 0.14 0.89
Steinheim a.d. Murr, grube Sigrist Brundon -0.13 2.38 -0.05 0.96
Steinheim a.d. Murr, grube Sigrist Kent's Cavern -9.39 2.61 -3.59 0.0003
Steinheim a.d. Murr, grube Sigrist Clacton 9.10 3.15 2.88 0.0039
Steinheim a.d. Murr, grube Sigrist Mauer -6.86 2.53 -2.71 0.0067
Steinheim a.d. Murr, grube Sigrist Gough’s Cave -5.69 2.22 -2.56 0.010
Steinheim a.d. Murr, grube Sigrist Barrington -5.44 2.21 -2.46 0.014
Clacton Brühl (Koller), Schlangenwinkel -3.18 3.68 -0.86 0.39
Clacton Brundon -11.67 3.15 -3.70 0.0002
Clacton Barrington -10.35 3.45 -3.00 0.0027
Clacton Boxgrove -8.67 3.17 -2.73 0.0063
Boxgrove Barrington -2.16 2.07 -1.04 0.30
Mauer Boxgrove 3.28 2.49 1.32 0.19
Mauer Gough’s Cave -2.55 2.45 -1.04 0.30
Mauer Barrington 0.53 2.47 0.21 0.83
Mauer Clacton 12.94 3.16 4.09 <0.0001
Mauer Brühl (Koller), Schlangenwinkel 13.45 3.58 3.76 0.0002
Mauer Grays Thurrock 9.63 2.78 3.46 0.0005
Mauer Crayford 8.13 2.59 3.14 0.0017
Mauer Edingen (Brühl), Edinger Ried 7.65 2.49 3.07 0.0021
Mauer Joint Mitnor Cave 8.53 3.08 2.77 0.0056
Mauer Kent's Cavern -6.40 2.71 -2.36 0.018
Mauer Brundon 5.96 2.53 2.35 0.019
Mauer Ilford 7.90 3.49 2.26 0.024
Süssenborn Mauer 3.25 2.71 1.20 0.23
Süssenborn Barrington 2.90 2.61 1.11 0.27
Süssenborn Kent's Cavern -1.09 2.77 -0.39 0.69
Süssenborn Gough’s Cave -0.87 2.57 -0.34 0.73
Süssenborn Brühl (Koller), Schlangenwinkel 14.80 3.57 4.14 <0.0001
Süssenborn Clacton 13.93 3.18 4.38 <0.0001
Süssenborn Grays Thurrock 11.06 2.83 3.91 <0.0001
Süssenborn Star Carr 12.67 3.26 3.89 0.0001
Süssenborn Joint Mitnor Cave 11.74 3.11 3.78 0.0002
Süssenborn Crayford 9.49 2.66 3.57 0.0004
Süssenborn Edingen (Brühl), Edinger Ried 8.65 2.58 3.35 0.0008
Süssenborn Ilford 11.22 3.49 3.21 0.0013
Süssenborn Steinheim a.d. Murr, grube Sigrist 8.31 2.61 3.18 0.0015
Süssenborn Brundon 8.10 2.61 3.10 0.0020
Süssenborn Steinheim a.d. Murr, grube Sammet 8.82 3.11 2.84 0.0045
Süssenborn Boxgrove 6.31 2.58 2.45 0.014
Voigtstedt Mauer -5.10 2.65 -1.93 0.05
Voigtstedt Crayford .96 2.59 1.92 0.06
Voigtstedt Edingen (Brühl), Edinger Ried 4.25 2.49 1.71 0.09
Voigtstedt Villa Seckendorff -3.91 2.59 -1.51 0.13
Voigtstedt Barrington -3.33 2.47 -1.34 0.18
Voigtstedt Joint Mitnor Cave 3.01 3.08 0.98 0.33
Voigtstedt Star Carr 2.72 3.24 0.84 0.40
Voigtstedt Steinheim a.d. Murr, grube Sammet -2.36 3.08 -0.76 0.44
Voigtstedt Steinheim a.d. Murr, grube Sigrist 1.46 2.53 0.58 0.56
Voigtstedt Brundon 0.79 2.53 0.31 0.76
Voigtstedt Boxgrove -0.36 2.49 -0.15 0.88
Voigtstedt Ilford -0.07 3.49 -0.02 0.98
Voigtstedt Clacton 11.75 3.16 3.72 0.0002
Voigtstedt Kent's Cavern -9.16 2.71 -3.38 0.0007
Voigtstedt Süssenborn -7.73 2.71 -2.85 0.0043
Voigtstedt Brühl (Koller), Schlangenwinkel 9.09 3.58 2.54 0.011
Voigtstedt Grays Thurrock 6.69 2.78 2.41 0.016
Voigtstedt Gough’s Cave -5.55 2.45 -2.27 0.024

APPENDIX 7.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Dama dama in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif Z p
Joint Mitnor Cave Brühl (Koller), Rheingewann 4.04 3.55 1.14 0.26
Joint Mitnor Cave Clacton -12.34 3.33 -3.70 0.0002
Joint Mitnor Cave Grays Thurrock -11.99 3.35 -3.58 0.0003
Joint Mitnor Cave Hoe Grange quarry -11.17 3.85 -2.90 0.0037
Joint Mitnor Cave Barrington 7.41 3.73 1.99 0.047
Hoe Grange quarry Grays Thurrock -11.17 3.83 -2.92 0.0035
Hoe Grange quarry Barrington 11.81 4.44 2.66 0.0078
Hoe Grange quarry Brühl (Koller), Rheingewann 10.27 4.18 2.45 0.014
Hoe Grange quarry Clacton -7.89 3.73 -2.11 0.034
Brühl (Koller), Rheingewann Barrington 0.23 1.84 0.12 0.90
Otterstadt Brühl (Koller), Rheingewann 3.12 2.93 1.06 0.29
Otterstadt Barrington 3.05 3.03 1.01 0.31
Otterstadt Joint Mitnor Cave 1.24 3.41 0.36 0.72
Otterstadt Grays Thurrock -9.23 2.88 -3.21 0.0013
Otterstadt Clacton -8.77 2.96 -2.96 0.0031
Otterstadt Hoe Grange quarry -7.86 3.74 -2.10 0.035
Grays Thurrock Clacton 2.70 2.61 1.03 0.30
Grays Thurrock Brühl (Koller), Rheingewann 6.34 2.22 2.85 0.0043
Grays Thurrock Barrington 5.81 2.21 2.63 0.0085
Swanscombe Hoe Grange quarry 24.97 4.40 5.67 <0.0001
Swanscombe Joint Mitnor Cave 24.62 4.31 5.72 <0.0001
Swanscombe Otterstadt 21.56 4.30 5.01 <0.0001
Swanscombe Brühl (Koller), Rheingewann 18.15 5.21 3.49 0.0005
Swanscombe Clacton 14.78 4.39 3.37 0.0008
Swanscombe Barrington 17.86 5.59 3.20 0.0014
Swanscombe Grays Thurrock 10.31 4.62 2.23 0.026
West Runton Otterstadt. Otterstadtler Altrhein (Oberrhein) 5.56 2.93 1.90 0.06
West Runton Brühl (Koller), Rheingewann (Oberrhein) 3.60 1.91 1.88 0.06
West Runton Joint Mitnor Cave 6.06 3.55 1.71 0.09
West Runton Hoe Grange quarry 6.16 4.18 1.47 0.14
West Runton Barrington 2.48 1.84 1.35 0.18
West Runton Clacton 2.33 2.57 0.91 0.36
West Runton Grays Thurrock 1.46 2.22 0.66 0.51
West Runton Swanscombe 1.04 5.21 0.20 0.84

APPENDIX 8.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Capreolus sp. in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Star Carr Ketsch, Hohwiesen 2.49 2.81 0.89 0.38
Star Carr Brühl (Koller), Schlangenwinkel -1.50 2.82 -0.53 0.59
Star Carr Edingen (Brühl), Edinger Ried 0.55 2.81 0.20 0.84
Star Carr Ilford 0.29 3.40 0.08 0.93
Edingen (Brühl), Edinger Ried Brühl (Koller), Schlangenwinkel -2.96 2.33 -1.27 0.20
Ketsch, Hohwiesen Ilford -1.05 1.81 -0.58 0.56
Ketsch, Hohwiesen Brühl (Koller), Schlangenwinkel -6.22 2.33 -2.67 0.0077
Ketsch, Hohwiesen Edingen (Brühl), Edinger Ried -4.00 1.91 -2.09 0.037
Ilford Brühl (Koller), Schlangenwinkel -2.14 2.59 -0.82 0.41
Ilford Edingen (Brühl), Edinger Ried -0.35 1.81 -0.19 0.85
Süssenborn Ketsch, Hohwiesen 3.15 1.81 1.74 0.08
Süssenborn Edingen (Brühl), Edinger Ried 2.45 1.81 1.36 0.18
Süssenborn Brühl (Koller), Schlangenwinkel 2.14 2.59 0.82 0.41
Süssenborn Star Carr 2.60 3.40 0.76 0.44
Süssenborn Ilford 0.50 1.29 0.39 0.70
Voigtstedt Brühl (Koller), Schlangenwinkel -3.91 2.58 -1.51 0.13
Voigtstedt Süssenborn -3.30 2.79 -1.18 0.24
Voigtstedt Ketsch, Hohwiesen 2.55 2.45 1.04 0.30
Voigtstedt Edingen (Brühl), Edinger Ried -1.05 2.45 -0.43 0.67
Voigtstedt Ilford 0.00 2.79 0.00 1.00
Voigtstedt Star Carr 0.00 2.85 0.00 1.00

APPENDIX 9.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Megacerini spp. in localities. The significant differences are mostly due to the smaller size of early Middle Pleistocene Praemegaceros and Megaloceros species compared to late Middle and Late Pleistocene Megaloceros giganteus.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Kent's Cavern Ireland 7.86 11.18 0.70 0.48
Kent's Cavern Isleworth, Willment’s pit 0.00 1.53 0.00 1.00
Isleworth, Willment’s pit Ireland 5.77 11.18 0.52 0.61
Villa Seckendorff Swanscombe 4.42 2.31 1.91 0.06
Villa Seckendorff Kent's Cavern 2.06 2.25 0.92 0.36
Villa Seckendorff Isleworth, Willment’s pit 1.60 2.25 0.71 0.48
Villa Seckendorff Steinheim, grube Sammet -1.84 2.61 -0.70 0.48
Villa Seckendorff Süssenborn 15.99 4.22 3.79 0.0002
Villa Seckendorff Pakefield 6.34 2.22 2.85 0.0043
Villa Seckendorff Ireland 17.01 7.65 2.22 0.026
Steinheim, grube Sammet Kent's Cavern 4.24 2.72 1.56 0.12
Steinheim, grube Sammet Isleworth, Willment’s pit 3.39 2.72 1.25 0.21
Steinheim, grube Sammet Ireland 22.85 6.94 3.29 0.0010
Steinheim, grube Sammet Pakefield 7.85 2.57 3.06 0.0022
Swanscombe Kent's Cavern -2.38 2.09 -1.14 0.25
Swanscombe Isleworth, Willment’s pit -1.43 2.09 -0.68 0.49
Swanscombe Ireland -5.17 8.00 -0.65 0.52
Swanscombe Pakefield 5.14 2.11 2.44 0.015
Swanscombe Steinheim, grube Sammet -5.84 2.58 -2.26 0.024
Pakefield Ireland -32.74 9.06 -3.61 0.0003
Pakefield Isleworth, Willment’s pit -3.73 1.79 -2.09 0.037
Pakefield Kent's Cavern -3.73 1.79 -2.09 0.037
Süssenborn Swanscombe -8.48 4.33 -1.96 0.05
Süssenborn Ireland -27.68 5.95 -4.65 <0.0001
Süssenborn Steinheim, grube Sammet -18.04 4.06 -4.45 <0.0001
Süssenborn Pakefield 11.67 4.69 2.49 0.013
Süssenborn Kent's Cavern -13.10 5.52 -2.37 0.018
Süssenborn Isleworth, Willment’s pit -11.26 5.52 -2.04 0.042
Voigtstedt Süssenborn -0.79 4.69 -0.17 0.87
Voigtstedt Ireland -34.80 5.96 -5.84 <0.0001
Voigtstedt Steinheim, grube Sammet -22.85 4.72 -4.84 <0.0001
Voigtstedt Villa Seckendorff -21.16 5.02 -4.21 <0.0001
Voigtstedt Kent's Cavern -18.96 6.85 -2.77 0.0057
Voigtstedt Pakefield 15.15 5.72 2.65 0.0081
Voigtstedt Swanscombe -11.86 5.19 -2.29 0.022
Voigtstedt Isleworth, Willment’s pit -14.63 6.85 -2.13 0.033

APPENDIX 10.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Rangifer tarandus in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Kent's Cavern Isleworth, Willment's pit -17.67 4.14 -4.27 <0.0001
Wretton Kent's Cavern 17.53 3.77 4.65 <0.0001
Wretton Isleworth, Willment's pit 3.06 4.00 0.76 0.44

APPENDIX 11.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Alcini in localities. The significant differences are mostly due to the larger size of early Middle Pleistocene Cervalces latifrons compared to Late Pleistocene and Holocene Alces alces.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Star Carr Mauer -12.39 3.45 -3.60 0.0003
Star Carr Brühl (Koller), Schlangenwinkel -6.47 3.45 -1.88 0.061
Mauer Brühl (Koller), Schlangenwinkel 5.17 2.08 2.48 0.013
Süssenborn Star Carr 14.93 3.34 4.48 <0.0001
Süssenborn Brühl (Koller), Schlangenwinkel 8.37 2.56 3.27 0.0011
Süssenborn Mauer 5.54 2.56 2.16 0.031

APPENDIX 12.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Stephanorhinus hundsheimensis in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Pakefield Mauer -3.33 2.09 -1.60 0.11
Süssenborn Mauer -2.63 2.17 -1.21 0.22
Süssenborn Pakefield 0.25 1.94 0.13 0.90
West Runton Süssenborn 1.67 2.00 0.83 0.40
West Runton Pakefield 0.42 1.44 0.29 0.77
West Runton Mauer 0.32 2.20 0.15 0.88
Voigtstedt Pakefield 7.48 4.20 1.78 0.08
Voigtstedt Süssenborn 3.36 3.56 0.94 0.35
Voigtstedt Mauer -1.06 3.49 -0.30 0.76
Voigtstedt West Runton -1.38 4.82 -0.29 0.78

APPENDIX 13.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Stephanorhinus hemitoechus in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Joint Mitnor Cave Ilford 2.19 2.39 0.91 0.36
Joint Mitnor Cave Barrington 1.53 2.59 0.59 0.56
Reilingen, Spies Joint Mitnor Cave -2.63 1.62 -1.62 0.11
Reilingen, Spies Barrington -3.43 2.34 -1.47 0.14
Reilingen, Spies Ilford -0.19 2.21 -0.08 0.93
Ilford Barrington -1.53 2.45 -0.63 0.53
Swanscombe Barrington -4.58 2.59 -1.77 0.08
Swanscombe Reilingen, Spies -2.63 1.62 -1.62 0.11
Swanscombe Ilford -3.44 2.39 -1.44 0.15
Swanscombe Joint Mitnor Cave -1.50 1.29 -1.16 0.25

APPENDIX 14.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Coelodonta antiquitatis in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Kent's Cavern Aufhausener höhle 2.31 2.49 0.93 0.35
Whitemoor Haye Aufhausener höhle 3.30 2.79 1.18 0.24
Whitemoor Haye Kent's Cavern 1.61 2.20 0.73 0.46
Whitemoor Haye Lampertheim in der Tanne 0.42 1.44 0.29 0.77
Villa Seckendorff Aufhausener höhle 3.30 2.79 1.18 0.24
Villa Seckendorff Lampertheim in der Tanne 0.42 1.44 0.29 0.77
Villa Seckendorff Kent's Cavern -0.32 2.20 -0.15 0.88
Villa Seckendorff Whitemoor Haye 0.00 1.29 0.00 1.00
Lampertheim in der Tanne Aufhausener höhle 0.65 2.56 0.25 0.80
Lampertheim in der Tanne Kent's Cavern 0.00 2.09 0.00 1.00

APPENDIX 15.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Bison priscus/schoetensacki in localities. Some of the significant differences are due to the smaller size of early Middle Pleistocene Bison schoetensacki compared to Late Pleistocene B. priscus.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Kent's Cavern Boxgrove 6.41 3.31 1.94 0.053
Kent's Cavern Brundon 5.16 3.11 1.66 0.097
Kent's Cavern Joint Mitnor Cave 5.18 3.14 1.65 0.099
Kent's Cavern Isleworth, Willment’s pit 19.59 4.03 4.87 <0.0001
Kent's Cavern Barrington 14.33 5.58 2.57 0.010
Isleworth, Willment’s pit Brundon -6.38 4.48 -1.42 0.16
Isleworth, Willment’s pit Barrington -24.42 5.40 -4.53 <0.0001
Isleworth, Willment’s pit Boxgrove -10.71 5.01 -2.14 0.033
Wretton Swanscombe -8.52 5.33 -1.60 0.11
Wretton Pakefield -6.67 4.47 -1.49 0.14
Wretton Isleworth, Willment’s pit -5.31 4.56 -1.17 0.24
Wretton West Runton -7.69 7.46 -1.03 0.303
Wretton Barrington -30.00 5.45 -5.50 <0.0001
Wretton Kent's Cavern -22.78 4.35 -5.23 <0.0001
Wretton Steinheim, grube Sammet -42.07 5.67 -7.42 <0.0001
Wretton Taubach -31.07 4.87 -6.38 <0.0001
Wretton Villa Seckendorff -16.88 4.43 -3.81 0.0001
Wretton Mauer -16.33 4.35 -3.75 0.0002
Wretton Joint Mitnor Cave -15.97 4.43 -3.61 0.0003
Wretton Süssenborn -16.45 5.07 -3.24 0.0012
Wretton Boxgrove -14.44 5.73 -2.52 0.012
Wretton Brundon -10.93 5.06 -2.16 0.031
Villa Seckendorff Kent's Cavern -5.32 3.14 -1.69 0.09
Villa Seckendorff Swanscombe 3.83 2.69 1.42 0.16
Villa Seckendorff West Runton 4.38 3.20 1.37 0.17
Villa Seckendorff Brundon 2.13 2.67 0.80 0.43
Villa Seckendorff Mauer 1.82 3.14 0.58 0.56
Villa Seckendorff Barrington 0.41 5.88 0.07 0.94
Villa Seckendorff Boxgrove 0.17 2.75 0.06 0.95
Villa Seckendorff Joint Mitnor Cave -0.08 2.89 -0.03 0.98
Villa Seckendorff Isleworth, Willment’s pit 13.04 4.03 3.23 0.0012
Villa Seckendorff Taubach -12.25 4.75 -2.58 0.0099
Villa Seckendorff Pakefield 6.19 2.83 2.18 0.029
Villa Seckendorff Süssenborn 11.20 5.15 2.17 0.030
Villa Seckendorff Steinheim, grube Sammet -13.56 6.29 -2.16 0.031
Joint Mitnor Cave Brundon 1.38 2.67 0.52 0.61
Joint Mitnor Cave Boxgrove 0.83 2.75 0.30 0.76
Joint Mitnor Cave Barrington -0.15 5.88 -0.03 0.98
Joint Mitnor Cave Isleworth, Willment’s pit 11.13 4.03 2.76 0.0058
Taubach Kent's Cavern 5.28 4.62 1.14 0.25
Taubach Barrington 23.39 5.52 4.24 <0.0001
Taubach Isleworth, Willment’s pit 27.89 4.74 5.89 <0.0001
Taubach Pakefield 20.40 4.81 4.24 <0.0001
Taubach Süssenborn 31.34 5.17 6.06 <0.0001
Taubach Mauer 16.79 4.62 3.63 0.0003
Taubach Swanscombe 15.89 5.85 2.72 0.0066
Taubach Steinheim, grube Sammet 14.07 5.72 2.46 0.014
Taubach Joint Mitnor Cave 11.31 4.75 2.38 0.017
Taubach Boxgrove 14.27 6.30 2.26 0.024
Taubach Brundon 10.94 5.53 1.98 0.048
Brundon Barrington -5.31 7.16 -0.74 0.46
Brundon Boxgrove -0.63 1.95 -0.32 0.75
Steinheim, grube Sammet Joint Mitnor Cave 10.98 6.29 1.75 0.081
Steinheim, grube Sammet Kent's Cavern -4.58 5.93 -0.77 0.44
Steinheim, grube Sammet Isleworth, Willment’s pit 38.46 5.65 6.81 <0.0001
Steinheim, grube Sammet Pakefield 31.05 6.43 4.83 <0.0001
Steinheim, grube Sammet Brundon 15.22 7.75 1.96 0.050
Steinheim, grube Sammet Mauer 18.48 5.93 3.12 0.0018
Steinheim, grube Sammet Barrington 17.63 6.01 2.93 0.0033
Steinheim, grube Sammet Boxgrove 20.49 9.04 2.27 0.023
Swanscombe Barrington -10.76 7.64 -1.41 0.16
Swanscombe Joint Mitnor Cave -3.26 2.69 -1.21 0.23
Swanscombe Isleworth, Willment’s pit 5.30 4.69 1.13 0.26
Swanscombe Boxgrove -1.58 1.84 -0.86 0.39
Swanscombe Mauer -2.23 3.18 -0.70 0.48
Swanscombe Pakefield 1.75 2.57 0.68 0.50
Swanscombe Brundon -0.55 2.01 -0.27 0.78
Swanscombe Kent's Cavern -8.27 3.18 -2.60 0.0093
Swanscombe Steinheim, grube Sammet -20.70 8.29 -2.50 0.013
Boxgrove Barrington -6.07 8.32 -0.73 0.47
Mauer Barrington -4.89 5.58 -0.88 0.38
Mauer Joint Mitnor Cave -1.68 3.14 -0.53 0.59
Mauer Brundon 1.03 3.11 0.33 0.74
Mauer Boxgrove 0.00 3.31 0.00 1.000
Mauer Isleworth, Willment’s pit 11.83 4.03 2.94 0.0033
Mauer Kent's Cavern -8.69 3.32 -2.62 0.0088
Pakefield Boxgrove -3.92 2.61 -1.50 0.133
Pakefield Brundon -2.70 2.56 -1.06 0.29
Pakefield Isleworth, Willment’s pit 1.84 4.06 0.45 0.65
Pakefield Kent's Cavern -12.04 3.11 -3.87 0.0001
Pakefield Barrington -18.57 6.00 -3.10 0.0020
Pakefield Mauer -7.13 3.11 -2.29 0.022
Pakefield Joint Mitnor Cave -5.84 2.83 -2.06 0.039
Süssenborn Mauer -9.49 4.96 -1.91 0.056
Süssenborn Isleworth, Willment’s pit 9.02 4.97 1.82 0.069
Süssenborn Boxgrove -8.90 7.02 -1.27 0.21
Süssenborn Pakefield 5.79 5.23 1.11 0.27
Süssenborn Brundon -3.33 6.11 -0.55 0.59
Süssenborn Swanscombe -1.01 6.49 -0.16 0.88
Süssenborn Kent's Cavern -23.00 4.96 -4.64 <0.0001
Süssenborn Steinheim, grube Sammet -38.83 5.80 -6.69 <0.0001
Süssenborn Barrington -20.84 5.62 -3.71 0.0002
Süssenborn Joint Mitnor Cave -10.98 5.15 -2.13 0.033
West Runton Taubach -16.07 8.28 -1.94 0.05
West Runton Barrington -15.85 11.13 -1.42 0.16
West Runton Mauer -4.78 4.00 -1.19 0.23
West Runton Boxgrove -1.88 1.62 -1.16 0.25
West Runton Joint Mitnor Cave -3.21 3.20 -1.00 0.32
West Runton Brundon -1.00 2.00 -0.50 0.62
West Runton Süssenborn -3.93 9.30 -0.42 0.67
West Runton Swanscombe -0.35 1.81 -0.19 0.85
West Runton Isleworth, Willment’s pit 0.80 6.44 0.12 0.90
West Runton Pakefield 0.00 2.99 0.00 1.000
West Runton Steinheim, grube Sammet -28.74 12.15 -2.37 0.018
West Runton Kent's Cavern -8.16 4.00 -2.04 0.042

APPENDIX 16.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Bos primigenius in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Star Carr Brundon -6.63 3.93 -1.69 0.092
Star Carr Clacton -15.03 3.83 -3.92 <0.0001
Star Carr Ilford -28.83 4.73 -6.09 <0.0001
Star Carr Grays Thurrock -13.07 3.57 -3.66 0.0003
Star Carr Joint Mitnor Cave -9.98 3.57 -2.79 0.0052
Star Carr Aveley -9.18 3.60 -2.55 0.011
Star Carr Barrington -10.19 4.16 -2.45 0.014
Star Carr Brühl (Koller), Rheingewann -7.93 3.63 -2.18 0.029
Villa Seckendorff Grays Thurrock -9.60 5.31 -1.81 0.071
Villa Seckendorff Aveley -5.98 5.18 -1.15 0.25
Villa Seckendorff Clacton -4.99 5.01 -1.00 0.32
Villa Seckendorff Barrington -5.86 7.31 -0.80 0.42
Villa Seckendorff Brühl (Koller), Rheingewann 3.62 5.82 0.62 0.53
Villa Seckendorff Joint Mitnor Cave -2.28 5.31 -0.43 0.67
Villa Seckendorff Swanscombe 1.25 5.40 0.23 0.82
Villa Seckendorff Brundon -0.11 6.74 -0.02 0.99
Villa Seckendorff Ilford -18.79 5.30 -3.54 0.0004
Villa Seckendorff Star Carr 16.13 5.01 3.22 0.0013
Joint Mitnor Cave Grays Thurrock -3.00 2.89 -1.04 0.30
Joint Mitnor Cave Brühl (Koller), Rheingewann 2.19 2.70 0.81 0.42
Joint Mitnor Cave Aveley -2.24 3.01 -0.75 0.46
Joint Mitnor Cave Barrington -1.50 2.75 -0.55 0.59
Joint Mitnor Cave Clacton -1.51 3.50 -0.43 0.67
Joint Mitnor Cave Brundon 0.99 2.69 0.37 0.71
Joint Mitnor Cave Ilford -10.13 4.91 -2.07 0.040
Barrington Aveley -1.45 3.03 -0.48 0.63
Brühl (Koller), Rheingewann Barrington -2.81 2.21 -1.27 0.20
Brühl (Koller), Rheingewann Aveley -3.04 2.88 -1.06 0.29
Brühl (Koller), Rheingewann Brundon -0.49 2.22 -0.22 0.83
Brundon Aveley -1.76 2.93 -0.60 0.55
Brundon Barrington -0.68 1.84 -0.37 0.71
Ilford Brundon 11.73 6.10 1.92 0.055
Ilford Barrington 7.58 6.59 1.15 0.25
Ilford Aveley -1.02 4.81 -0.21 0.83
Ilford Grays Thurrock 0.82 4.91 0.17 0.87
Ilford Brühl (Koller), Rheingewann 20.71 5.32 3.89 <0.0001
Ilford Clacton 11.06 4.73 2.34 0.019
Grays Thurrock Brundon 2.98 2.69 1.11 0.27
Grays Thurrock Clacton 3.08 3.50 0.88 0.38
Grays Thurrock Barrington 1.17 2.75 0.42 0.67
Grays Thurrock Aveley -0.23 3.01 -0.08 0.94
Grays Thurrock Brühl (Koller), Rheingewann 5.73 2.70 2.12 0.034
Clacton Brühl (Koller), Rheingewann 6.47 3.54 1.83 0.067
Clacton Aveley -2.80 3.54 -0.79 0.43
Clacton Brundon 2.60 3.81 0.68 0.49
Clacton Barrington -1.04 4.02 -0.26 0.80
Swanscombe Grays Thurrock -4.79 2.83 -1.69 0.091
Swanscombe Clacton -3.74 3.49 -1.07 0.28
Swanscombe Aveley -3.00 2.97 -1.01 0.31
Swanscombe Barrington -2.39 2.61 -0.91 0.36
Swanscombe Joint Mitnor Cave -1.31 2.83 -0.46 0.64
Swanscombe Brühl (Koller), Rheingewann 0.65 2.61 0.25 0.80
Swanscombe Brundon -0.29 2.57 -0.11 0.91
Swanscombe Ilford -13.46 4.98 -2.71 0.0068
Swanscombe Star Carr 7.30 3.57 2.04 0.041

APPENDIX 17.

Pairwise comparison by Wilcoxon tests of mean body mass (kg) of Equus ferus/mosbachensis in localities.

Fossil population by Fossil population Score Mean Difference Std. Err. Dif. Z p
Gough's Cave Brundon -15.48 4.48 -3.46 0.0005
Gough's Cave Frankenbacher Sande -10.66 3.11 -3.43 0.0006
Gough's Cave Crayford -22.01 6.46 -3.41 0.0007
Gough's Cave Aufhausener Höhle -8.82 3.11 -2.84 0.0045
Kent's Cavern Aufhausener Höhle -1.07 4.35 -0.25 0.81
Kent's Cavern Frankenbacher Sande -17.31 4.35 -3.98 <0.0001
Kent's Cavern Ilford -18.35 4.56 -4.02 <0.0001
Kent's Cavern Gough's Cave 15.46 5.06 3.06 0.0022
Kent's Cavern Brundon -12.25 4.56 -2.68 0.0073
Kent's Cavern Crayford -12.74 5.19 -2.45 0.014
Villa Seckendorff Kent's Cavern 13.71 7.93 1.73 0.08
Villa Seckendorff Aufhausener Höhle 15.14 9.34 1.62 0.11
Villa Seckendorff Brundon -10.02 8.14 -1.23 0.22
Villa Seckendorff Crayford -6.78 7.70 -0.88 0.38
Villa Seckendorff Swanscombe -7.67 11.91 -0.64 0.52
Villa Seckendorff Steinheim, grube Sigrist -5.43 11.38 -0.48 0.63
Villa Seckendorff Steinheim, grube Sammet 2.68 7.69 0.35 0.73
Villa Seckendorff Taubach -1.75 11.38 -0.15 0.88
Villa Seckendorff Gough's Cave 44.69 13.39 3.34 0.0008
Villa Seckendorff Frankenbacher Sande -30.58 9.34 -3.27 0.0011
Villa Seckendorff Ilford -24.48 8.14 -3.01 0.0026
Villa Seckendorff Mauer -21.87 9.18 -2.38 0.017
Taubach Frankenbacher Sande -4.77 3.07 -1.56 0.12
Taubach Mauer -3.91 3.15 -1.24 0.22
Taubach Aufhausener Höhle 3.39 3.07 1.10 0.27
Taubach Ilford -4.04 4.15 -0.97 0.33
Taubach Kent's Cavern 3.89 4.61 0.84 0.40
Taubach Steinheim, grube Sammet 2.19 5.84 0.38 0.71
Taubach Brundon -1.10 4.15 -0.27 0.79
Taubach Steinheim, grube Sigrist 0.22 2.52 0.09 0.93
Taubach Crayford -0.40 5.74 -0.07 0.94
Taubach Swanscombe 0.12 2.45 0.05 0.96
Taubach Gough's Cave 5.14 2.36 2.18 0.029
Crayford Brundon -3.07 5.11 -0.60 0.55
Crayford Aufhausener Höhle 12.28 5.17 2.38 0.017
Brundon Aufhausener Höhle 11.15 4.03 2.77 0.0056
Ilford Brundon 6.68 4.36 1.53 0.13
Ilford Frankenbacher Sande -5.16 4.03 -1.28 0.20
Ilford Aufhausener Höhle 15.76 4.03 3.92 <0.0001
Ilford Gough's Cave 16.29 4.48 3.64 0.0003
Ilford Crayford 10.60 5.11 2.08 0.038
Steinheim, grube Sammet Brundon -7.53 5.15 -1.46 0.14
Steinheim, grube Sammet Kent's Cavern 7.42 5.24 1.42 0.16
Steinheim, grube Sammet Aufhausener Höhle 7.08 5.24 1.35 0.18
Steinheim, grube Sammet Crayford -6.22 5.54 -1.12 0.26
Steinheim, grube Sammet Frankenbacher Sande -17.73 5.24 -3.39 0.0007
Steinheim, grube Sammet Gough's Cave 21.01 6.58 3.19 0.0014
Steinheim, grube Sammet Ilford -15.31 5.15 -2.97 0.0030
Steinheim, grube Sammet Mauer -13.01 5.20 -2.50 0.012
Steinheim, grube Sigrist Kent's Cavern 8.98 4.61 1.95 0.05
Steinheim, grube Sigrist Aufhausener Höhle 5.82  3.07 1.90 0.06
Steinheim, grube Sigrist Ilford -6.68 4.15 -1.61 0.11
Steinheim, grube Sigrist Mauer -4.33 3.15 -1.37 0.17
Steinheim, grube Sigrist Brundon -2.72 4.15 -0.65 0.51
Steinheim, grube Sigrist Steinheim, grube Sammet 2.86 5.84 0.49 0.62
Steinheim, grube Sigrist Crayford -0.80 5.74 -0.14 0.89
Steinheim, grube Sigrist Gough's Cave 6.53 2.36 2.77 0.0056
Steinheim, grube Sigrist Frankenbacher Sande -7.12 3.07 -2.32 0.020
Swanscombe Kent's Cavern 8.85 4.72 1.88 0.06
Swanscombe Ilford -6.35 4.22 -1.50 0.13
Swanscombe Mauer -3.40 3.15 -1.08 0.28
Swanscombe Steinheim, grube Sammet 4.92 6.03 0.82 0.41
Swanscombe Steinheim, grube Sigrist 1.06 2.45 0.43 0.67
Swanscombe Crayford 1.99 5.93 0.34 0.74
Swanscombe Brundon -0.40 4.22 -0.10 0.92
Swanscombe Gough's Cave 6.27 2.26 2.78 0.0055
Swanscombe Aufhausener Höhle 6.84 3.06 2.24 0.025
Swanscombe Frankenbacher Sande -6.47 3.06 -2.11 0.035
Frankenbacher Sande Aufhausener Höhle 13.44 3.32 4.05 <0.0001
Frankenbacher Sande Crayford 14.11 5.17 2.73 0.0063
Frankenbacher Sande Brundon 9.48 4.03 2.35 0.019
Mauer Crayford 8.55 5.14 1.66 0.10
Mauer Brundon 5.06 4.04 1.25 0.21
Mauer Frankenbacher Sande -2.00 3.37 -0.59 0.55
Mauer Ilford 0.43 4.04 0.11 0.92
Mauer Gough's Cave 10.94 3.22 3.40 0.0007
Mauer Kent's Cavern 14.62 4.35 3.36 0.0008
Mauer Aufhausener Höhle 10.74 3.37 3.19 0.0014
 

author1Juha Saarinen. Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland. This email address is being protected from spambots. You need JavaScript enabled to view it. and Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.

Juha Saarinen is a palaeontologist studying palaeoecology and ecometrics of large herbivorous terrestrial mammals. He received his PhD degree in the University of Helsinki, Finland, in December 2014. In his PhD thesis he examined the evolution of body size in various terrestrial mammal lineages throughout the Cenozoic, as well as variation in diet and body size of Pleistocene European ungulates in relation to environmental conditions. As a part of his work, Juha Saarinen has developed a new palaeodietary analysis method for Proboscidea, based on mesowear of molar teeth. Palaeodietary analyses of ungulates and proboscideans, and their comparison with palaeoenvironmental proxies, mammal community structures and morphological evolution, are the focus of his current research. Juha Saarinen is also the body size data coordinator of the NOW database (http://www.helsinki.fi/science/now).

divider

author2Jussi Eronen. Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland. This email address is being protected from spambots. You need JavaScript enabled to view it.

Jussi Eronen is a researcher at the University of Helsinki and at BIOS - an independent research unit, located in Helsinki. He received his PhD in 2006. He aims his research so that the results of the work are relevant for ongoing discussion about the development of and changes in environments and ecosystems, and to the priorities of society. He is a founding member of BIOS (http://bios.fi/), and in the core team of the Scientific Consensus on Maintaining Humanity's Life Support Systems in the 21st Century (http://consensusforaction.stanford.edu/). In general his research agenda is directed towards understanding ecosystem dynamics and climate through time, including present and future. He is Chair of the iCCB (integrative Climate Change Biology, together with Jason Head, (see http://www.iccbio.org/), part of the NECLIME and ETE programmes/communities and an Associate Coordinator for the NOW database (http://www.helsinki.fi/science/now).divider 

author3Mikael Fortelius. Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland. This email address is being protected from spambots. You need JavaScript enabled to view it.

Mikael Fortelius is a palaeontologist with special interest in the relationships between climate, vegetation and herbivores, especially the plant-eating mammals of the last 25 million years. He has a long-standing interest in how mammalian teeth work, grow, and evolve, and how modelling functional traits can help us understand the past, present, and future states of the world. Mikael Fortelius is Professor of Evolutionary Palaeontology in the Department of Geoscience and Geography at the University of Helsinki and Kristine Bonnevie Professor at the University of Oslo, currently also Alexander von Humboldt Research Awardee at the Museum of Natural History, Berlin. For the last 20 years he has been engaged in developing and coordinating the NOW database of fossil mammals. 

divider 

author4Heikki Seppä. Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland. This email address is being protected from spambots. You need JavaScript enabled to view it.

Heikki Seppä is a palaeoclimatologist and palaeoecologist interested in Holocene and glacial climate change, theory and methods of quantitative climate reconstructions, and model-proxy comparisons in palaeoclimatology. He is also investigating the influence of past climate changes on species and ecosystems and the impact of early human populations on vegetation. 

divider 

author5Adrian M. Lister. Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. This email address is being protected from spambots. You need JavaScript enabled to view it.

Adrian Lister is a Research Leader in the Department of Earth Sciences of the Natural History Museum in London. He obtained his BA and PhD in Zoology from the University of Cambridge, and from 1991 taught at University College London where he became Professor of Palaeobiology, before moving to the NHM in 2007. His research interests are in the evolution of mammals during the Quaternary ice ages – with special reference to large mammals such as elephants and deer. He has authored nearly 200 scientific papers and his two books on mammoths have sold over 60,000 copies in six languages. Other major research interests include the evolution of endemic island mammals, and the causes of megafaunal extinction at the end of the ice age. As well as his research on fossil mammals, Adrian Lister also studies the taxonomy of their living representatives, serving on the specialist panels of IUCN for both Asian elephants and deer, and has led expeditions to study living elephants in Nepal, India, Ghana and Borneo.

divider