Articles

Print Email

Biases in the study of relationships between biodiversity dynamics and fluctuation of environmental conditions

Stéphane Jouve, Bastien Mennecart, Julien Douteau, and Nour-Eddine Jalil

Plain Language Abstract

Recent study considered the evolution of marine crocodylomorphs in comparison with the fluctuations of sea surface temperature and sea level and suggested a possible correlation of the evolution of a part of these taxa with the sea surface temperature. We tested the impact of inserting new material and species described since the publication of that paper two years ago, on the suggested correlations to determine the reliability of the results. The insertion of unidentified teleosauroids at the specific and generic level in time bins where previous analyses considered the absence of any marine crocodylomorph, and some taxonomical corrections have also been tested. Each of these corrections impacts on the results, and most of them drives to the opposite conclusion than the original work, a better correlation of the marine crocodylomorph diversity with the sea level than with the sea surface temperature. When all corrections are considered, no correlations are found with any of the environmental fluctuations tested. These results point out the crucial importance of taxonomical work in diversity studies to provide more reliable results.

Resumen en Español

Sesgos en el estudio de las relaciones entre la dinámica de la biodiversidad y la fluctuación de las condiciones ambientales

Durante las últimas décadas, han aumentado notablemente los estudios que revisan las correlaciones entre la dinámica de la diversidad y diversas variables ambientales, pero se han reconocido numerosos sesgos que afectan a estos análisis. Los estudios recientes que consideran la evolución de los cocodrilomorfos marinos en comparación con las fluctuaciones de la temperatura de la superficie del mar y el nivel del mar obtuvieron resultados contradictorios. Sin embargo, consideramos un análisis de la diversidad publicado dos años antes de nuestra investigación, y advertimos varios problemas taxonómicos (nuevo material y especies descritos con posterioridad a la publicación de este artículo, talatosuquios no identificados en los periodos de tiempo en los que análisis previos consideraron la ausencia de cualquier cocodrilomorfo marino, y algunas correcciones taxonómicas). Aquí ponemos a prueba el impacto de la actualización del conjunto de datos sobre estos resultados. También ponemos a prueba las consecuencias del intervalo de tiempo considerado y varios métodos en la reconstrucción de la curva de temperatura superficial del mar.

Cada una de estas correcciones y modificaciones influye notablemente en los resultados, y la mayoría de ellos conducen a una conclusión diferente a la de la obra original. Estos resultados señalan la importancia crucial del trabajo taxonómico en los estudios de diversidad para proporcionar resultados fiables, como el método utilizado para construir las aproximaciones.
Los resultados contradictorios aquí obtenidos cuestionan la veracidad de las correlaciones propuestas hasta ahora entre la evolución de los cocodrilomorfos y las aproximaciones ambientales. La revisión taxonómica y filogenética profunda debe llevarse a cabo antes de estudiar la evolución de la diversidad de un grupo. Esto también cuestiona fuertemente el uso de la Base de Datos de Paleobiología (Paleobiology Database) en análisis de diversidad cuando el grupo estudiado aún no ha sido revisado y, además, hay que tener en cuenta que en este conjunto de datos se encuentran numerosas especies dudosas del siglo XIX.

Palabras clave: talatosuquios; curvas de diversidad; sesgos; evolución; fluctuaciones ambientales

Traducción: Enrique Peñalver (Sociedad Española de Paleontología)

Résumé en Français

Biais dans les études de la dynamique de biodiversité comparées aux fluctuations des conditions environnementales.

Durant les dernières décennies le nombre des études testant les corrélations entre la dynamique de diversité biologique et différentes variables environnementales ont augmentées de manières considérables, mais de nombreux biais affectant ces analyses ont été identifiés. Plusieurs études récentes ont considérées l'évolution des crocodylomorphes marins en comparaison des fluctuations de la température des eaux marines de surface et du niveau marin, et ont obtenu des résultats contradictoires. Nous avons considéré une étude publiée deux ans avant notre travail et y avons apporté plusieurs corrections taxonomiques (nouveaux matériels et espèces, introduction de crocodylomorphes marins non identifiés dans des niveaux où les analyses précédentes ont considéré une absence totale de crocodylomorphes, et plusieurs corrections taxonomiques). Nous avons donc testé l'impact de ces modifications des jeux de données, mais aussi l'impact du choix de l'intervalle de temps considéré ainsi que plusieurs méthodes de reconstruction des courbes de température des eaux de surface sur les résultats.

Chacune des corrections et modifications apportée impacte considérablement les résultats, et la plupart d'entre eux conduisent à des conclusions différentes de celles de l'article original. Ces résultats démontrent clairement que le travail taxonomique est crucial pour la fiabilité des analyses de diversité, tout comme les méthodes de reconstruction des proxys.
Les résultats contradictoires obtenus ici nous questionnent aussi sur la fiabilité des corrélations proposées jusqu'à présent entre l'évolution des crocodylomorphes et celle des variables environnementales. De profondes révisions taxonomique et phylogénétique devraient ainsi être menées avant toute étude de l'évolution de diversité d'un groupe donné. Ils posent aussi la question de l'utilisation de la base de données Paleobiology database pour les analyses de diversité quand le groupe étudié n'a pas encore fait l'objet d'une révision et que de nombreuses espèces du XIXème siècle de validité douteuse sont considérées dans les données.

Mots clef : Thalattosuchiens ; courbes de diversité ; biais, évolution, fluctuations environnementales.

Translator: Authors

Deutsche Zusammenfassung

Biase bei der Untersuchung von Beziehungen zwischen Biodiversitäts-Dynamiken und Fluktuation von Umweltbedingungen

Während des letzten Jahrzehnts haben Untersuchungen über die Beziehungen der Biodiversitätsdynamiken mit verschiedenen Umweltvariablen stark zugenommen, jedoch wurden zahlreiche Biase erkannt, welche diese Analysen beeinflussen. Neuste Untersuchungen über die Evolution von marinen Crocodylomorphen im Vergleich mit den Fluktuationen der Oberflächenwassertemperatur und dem Meeresspiegel ergaben widersprüchliche Ergebnisse.

Wir haben jedoch eine Diversitätsanalyse, die zwei Jahre vor unserer Arbeit veröffentlicht wurde betrachtet und bemerkten einige taxonomische Aspekte (neues Material und Arten, die seit der Veröffentlichung beschrieben wurden, nicht identifizierte Thalattosuchier in Time Bins für die vorherige Analysen die Abwesenheit jeglicher mariner Crocodylomorpher erwogen haben und einige taxonomische Korrekturen).Hier testen wir die Auswirkungen der Datensatz-Aktualisierung auf diese Ergebnisse. Ebenso testeten wir die Auswirkungen des betrachteten Zeitraums und verschiedene Methoden zur Rekonstruktion der Oberflächenwasser-Temperaturkurve.

Jede der Korrekturen und Modifikationen beeinflusst die Ergebnisse stark und die meisten führen zu unterschiedlichen Rückschlüssen als in der Originalarbeit. Diese Ergebnisse zeigen auf, wie wichtig taxonomische Arbeiten für zuverlässige Ergebnisse bei Diversitätsstudien sind, wie bei der Methode die zur Entwicklung der Proxies verwendet wurde. Die widersprüchlichen Ergebnisse die hier erzielt wurden stellen die Verlässlichkeit der bisher vorgeschlagenen Korrelationen zwischen der Evolution der Crocodylomorphen und den Umwelt-Proxies infrage. Es sollte eine tiefgreifende taxonomische und phylogenetische Überarbeitung durchgeführt werden, bevor die Diversitätsevolution einer Gruppe untersucht wird. Dies stellt auch die Nutzung der Paläobiologie Datenbank bei Diversitätsanalysen ernsthaft in Frage, wenn die untersuchte Gruppe noch nicht überprüft wurde und diese zahlreichen, zweifelhaften Arten aus dem 19. Jahrhundert in dieser Datenbank berücksichtigt werden.

Schlüsselwörter: Thalattosuchier; Diversitätskurven; Biase; Evolution; Umweltschwankungen

Translator: Eva Gebauer

Arabic

Translator: Ashraf M.T. Elewa

 

 

APPENDIX 1.

Species diversity data used in the correlation analyses, with various corrections: addition of the Moroccan machimosaurin, "Steneosaurus" cf. obtusidens (England), Machimosaurus rex, Anthracosuchus balrogus, and unidentified thalattosuchians (Sinemurian and Pliensbachian). In red are the corrected data. Species level. GL: ghost lineages. All appendices included in zipped file for download.

APPENDIX 2.

Genera diversity data used in the correlation analyses, with various corrections: addition of the Moroccan machimosaurin, "Steneosaurus" cf. obtusidens (England), Machimosaurus rex, Anthracosuchus balrogus, and unidentified thalattosuchians (Sinemurian and Pliensbachian). In red are the corrected data. Genera level. GL: ghost lineages. All appendices included in zipped file for download.

APPENDIX 3.

List of the crocodylomorph species considered in various diversity analyses (present work; Martin et al., 2014; Mannion et al., 2015; Tennant et al., 2016). The analyses considered the Hettangian-Rupelian time interval, except Tennant et al. (2016) who used the Jurassic-Cretaceous interval (Hettangian-Maastrichtian). All appendices included in zipped file for download.

APPENDIX 4.

Table of the values used to construct the graphs of the Figure 2 and Figure 3. Number of crocodylomorph species and genera considered in various diversity analyses (present work; Martin et al., 2014; Mannion et al., 2015; Tennant et al., 2016). All the analyses considered the Hettangian-Rupelian time interval, except Tennant et al. (2016) who used the Jurassic-Cretaceous interval (Hettangian-Maastrichtian). All appendices included in zipped file for download.

APPENDIX 5.

Data used to calculate the sea surface temperature polynomial curve. The theoretical values are obtained in OpenOffice 4 with the add-on CorelPolyGUI (Gutman et al., 2012). All appendices included in zipped file for download.

APPENDIX 6.

Data used in correlation analyses: uncorrected diversity, phylogenetically corrected diversity, logarithm, time-corrected (divided by duration of time bin), and generalized-differenced data, sea surface temperature (Martin et al., 2014), sea level (Haq et al., 1987; Miller et al., 2005), sea surface temperature from polynomial curve, sea surface temperature from three-point moving average, sea surface temperature from smoothing spline, sea surface temperature from weighted three-point moving average. All appendices included in zipped file for download.

APPENDIX 7.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014), the sea level from Haq et al. (1987) and Miller et al. (2005) for several time intervals (Hettangian-Rupelian; Pliensbachian-Rupelian; Toarcian-Priabonian). Comparison between the results obtained with the original data (Martin et al., 2014) (in blue) and the original data + the new material and species (in red). All appendices included in zipped file for download.

APPENDIX 8.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014), the sea level from Haq et al. (1987) and Miller et al. (2005) for several time intervals (Hettangian-Rupelian; Pliensbachian-Rupelian; Toarcian-Priabonian). Comparison between the results obtained with the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue) and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 9.

Complete result for the calculated correlations between the teleosauroid diversity with the sea surface temperature (Martin et al., 2014), the sea level from Haq et al. (1987) and Miller et al. (2005) for several time intervals (Hettangian-Berriasian; Pliensbachian-Berriasian). Comparison between the results obtained with the original data (Martin et al., 2014) (in blue), the original data (Martin et al., 2014) + the new material and species (in red), the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue), and the original data + unidentified thalattosuchians + ghost lineage + taxonomical corrections + new material and species (in red). All appendices included in zipped file for download.

APPENDIX 10.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from polynomial curve. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue) and the original data + the new material and species (in red). All appendices included in zipped file for download.

APPENDIX 11.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from polynomial curve. Comparison between the results obtained with the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue) and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 12.

Complete result for the calculated correlations between the teleosauroid diversity with the polynomial curve of the sea surface temperature (Martin et al., 2014) for two time intervals: Hettangian-Berriasian and Hettangian-Barremian. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue), the original data (Martin et al., 2014) + new material and species (in red), the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue), and the original data (Martin et al. 2014) + unidentified thalattosuchians + ghost lineage + new material + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 13.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from three-point moving average. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue) and the original data + the new material and species (in red). All appendices included in zipped file for download.

APPENDIX 14.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from three-point moving average. Comparison between the results obtained with the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue), and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material and species + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 15.

Complete result for the calculated correlations between the teleosauroid diversity with the three-point moving average of the sea surface temperature (Martin et al., 2014) for two time intervals: Hettangian-Berriasian and Hettangian-Barremian. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue), the original data (Martin et al., 2014) + new material and species (in red), the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue) and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material and species + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 16.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from smoothing spline. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue) and the original data + the new material and species (in red). All appendices included in zipped file for download.

APPENDIX 17.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from smoothing spline. Comparison between the results obtained with the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue), and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 18.

Complete result for the calculated correlations between the teleosauroid diversity with the smoothing spline of the sea surface temperature (Martin et al., 2014) for two time intervals: Hettangian-Berriasian and Hettangian-Barremian. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue), the original data (Martin et al., 2014) + new material and species (in red), the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue) and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material and species + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 19.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from weighted three-point moving average. Comparison between the results obtained with the original data (Martin et al., 2014) (in blue) and the original data + the new material and species (in red). All appendices included in zipped file for download.

APPENDIX 20.

Complete result for the calculated correlations between marine crocodylomorph diversity (metriorhynchoids excluded) with the sea surface temperature (Martin et al., 2014) from weighted three-point moving average. Comparison between the results obtained with the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue), and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material + taxonomic corrections (in red). All appendices included in zipped file for download.

APPENDIX 21.

Complete result for the calculated correlations between the teleosauroid diversity with the weighted three-point moving average of the sea surface temperature (Martin et al., 2014) for two time intervals: Hettangian-Berriasian and Hettangian-Barremian. Comparison between the results obtained with the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage (in blue), and the original data (Martin et al., 2014) + unidentified thalattosuchians + ghost lineage + new material + taxonomic corrections (in red). All appendices included in zipped file for download.

 

 

FIGURE 1. Comparison between the diversity count of Jurassic-Paleogene marine crocodylomorphs (excluding metriorhynchoids) of Martin et al. (2014) (excluding Pelagosaurus typus), with the data obtained in the present work after several corrections. All the data is phylogenetically corrected. The data used in the present work includes four new species, corrections for the number of Machimosaurus species, and taxonomical corrections (see text).

figure1

FIGURE 2. Comparison of the crocodylomorph species diversity used in various studies. 1, comparison of the number of species used for each marine crocodylomorph group; 2, comparison of the per cent of each group and of the genus Steneosaurus in the marine crocodylomorph diversity used (with and without metriorhynchoids).

figure2

FIGURE 3. Comparison of the crocodylomorph genus diversity used in various studies. 1, comparison of the number of genera used for each marine crocodylomorph group; 2, comparison of the percent of each group used in the marine crocodylomorph diversity (with and without metriorhynchoids).

figure3

FIGURE 4. Evolution of the sea surface temperature. Comparison of the raw data (Martin et al., 2014) with the curve obtained with the mean for each time interval and the curve obtained with the theoretical data calculated from the polynomial curve, smoothing spline, and two curves with three-point moving average and with weighted three-point moving average approaches.

figure4

 

 

TABLE 1. Number of significant correlations between sea surface temperature, sea level, and marine crocodylomorph diversity (excluding metriorhynchoids), according to the corrections conducted on the datasets and time interval considered. All curves are reconstructed from means for each geological stage. Spearman rank correlation with Spearman’s rho values. Abbreviations: SST, sea surface temperature (Martin et al., 2014); SL-H, sea level (Haq et al., 1987); SL-M, sea level (Miller et al., 2005); Hett-Rup, Hettangian-Rupelian; Pli-Rup, Pliensbachian-Rupelian; To-Pria, Toarcian-Priabonian.

    Marine crocodylomorph diversity
    (metriorhynchoids excluded)
    Mean curve
    SST Hett-Rup SL-H Het-Rup SL-M Het-Rup SST Pli-Rup SL-H Pli-Rup SL-M Pli-Rup SST To-Pria SL-H To-Pria SL-M To-Pria
Original data Genus, p<0.05 4 0 3 0 0 3 0 0 3
Species, p<0.05 6 0 3 5 0 3 0 0 2
Total, p<0.05 10 0 6 5 0 6 0 0 5
Original data +new material and species Genus, p<0.05 1 0 3 0 0 3 0 0 2
Species, p<0.05 2 0 3 2 0 2 0 0 0
Total, p<0.05 3 0 6 2 0 5 0 0 2
Original data +unidentified thalattosuchians +ghost lineages Genera, p<0.05 5 0 1            
Species, p<0.05 3 0 1            
Total, p<0.05 8 0 2            
All corrections Genera, p<0.05 0 0 1            
Species, p<0.05 0 0 0            
Total, p<0.05 0 0 1            

 

TABLE 2. Number of significant correlations between sea surface temperature and marine crocodylomorph diversity (excluding metriorhynchoids), according to the corrections conducted on the datasets and the method used to reconstruct the curve. Spearman rank correlation with Spearman’s rho values.

    Marine crocodylomorph diversity
    (metriorhynchoids excluded)
    Sea surface temperature (Hettangian-Rupelian)
    Mean
curve
Polynomial
curve
Three-point
moving average
Smoothing
spline curve
Weighted three-point
moving average
Original data Genus, p<0.05 4 0 0 0 1
Species, p<0.05 6 0 0 0 1
Total, p<0.05 10 0 0 0 2
Original data +new material and species Genus, p<0.05 1 0 0 0 0
Species, p<0.05 2 0 0 0 1
Total, p<0.05 3 0 0 0 1
Original data +unidentified thalattosuchians + ghost lineages Genera, p<0.05 5 0 1 0 2
Species, p<0.05 3 0 0 0 0
Total, p<0.05 8 0 1 0 2
All corrections Genera, p<0.05 0 0 0 0 0
Species, p<0.05 0 0 0 0 0
Total, p<0.05 0 0 0 0 0

 

TABLE 3. Number of significant correlations between sea surface temperature, sea level, and teleosauroid diversity, according to the corrections conducted on the datasets, and the method used to reconstruct the curve. Spearman rank correlation with Spearman’s rho values.

    Teleosauroid diversity
    Sea surface temperature Sea level Haq et al., 1987 Sea level Miller et al., 2005   Sea surface temperature
    Mean curve   Polynomial curve Three-point moving average Smoothing spline curve Weighted three-point moving average
Original data Genus, p<0.05 1 0 0   0 0 1 1
Species, p<0.05 1 0 0   0 0 1 1
Total, p<0.05 2 0 0   0 0 2 2
Original data +new material and species Genus, p<0.05 0 0 0   0 0 1 1
Species, p<0.05 2 0 0   0 0 0 1
Total, p<0.05 2 0 0   0 0 1 2
Original data +unidentified thalattosuchians + ghost lineages Genera, p<0.05 1 0 0   1 0 2 1
Species, p<0.05 1 0 0   0 0 1 1
Total, p<0.05 2 0 0   1 0 3 2
All corrections Genera, p<0.05 0 0 0   0 0 1 0
Species, p<0.05 0 0 0   0 0 0 0
Total, p<0.05 0 0 0   0 0 1 0
 

author1Stéphane Jouve. Sorbonne Universités, UPMC Univ Paris 06, CNRS, Muséum National d'Histoire Naturelle, Centre de Recherche sur la paléobiodiversité et les Paléoenvironnements (CR2P), 4 Place Jussieu, Tour 56, 5ème étage, F-75005, Paris, France This email address is being protected from spambots. You need JavaScript enabled to view it.

Stéphane Jouve is the curator of the palaeontological collections of the Sorbonne University (Paris, France), and an associate researcher of the Muséum National d'Histoire Naturelle of Paris, France. His research activities focus on the anatomy, systematics, palaeobiogeography, and evolution of the crocodylomorphs. 

divider

author2Bastien Mennecart. Muséum National d'Histoire Naturelle, CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, CP38, 57 rue Cuvier, 75005 Paris, France; Naturhistorisches Museum Basel, Augustinergasse 2, 4001 Basel, Switzerland This email address is being protected from spambots. You need JavaScript enabled to view it.

Bastien Mennecart mainly works on mammal anatomy and evolution, but his broad interest cover the entire vertebrate palaeontology. Since 2005, he contributes to and organizes field work around the world. He got his PhD at the University of Fribourg (Switzerland) in 2012 on phylogeny and evolution of ruminants. As postdoc at the Natural History Museum in Paris and Munich, he studied the connections between Asia and Europe during the Cainozoic. Since 2015, he works on a project to define the phylogeny of the extent and extinct ruminant based on 3D models of the inner ear region. 

divider

author3Julien Douteau. Le pontet 03160 Franchesse, France, This email address is being protected from spambots. You need JavaScript enabled to view it.

Julien Douteau is an autodidact palaeontologist. He is currently working in a private company as fossil preparator. He is collaborating in many palaeontological projects including vertebrate fossils from Carboniferous to Miocene. Since 2005, he contributes to and organizes field work around the world, mainly in France, USA, and Morocco. 

divider

author4Nour-Eddine Jalil. Muséum National d'Histoire Naturelle, CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, CP38, 57 rue Cuvier, 75005 Paris, France; BioDECOS Laboratory, Faculty of Sciences Semlalia, Universiy Cadi Ayyad, Morocco This email address is being protected from spambots. You need JavaScript enabled to view it.

Nour-Eddine JALIL is a Professor at the National Museum of Natural History. He began his career as a lecturer-researcher at the Faculty of Sciences Semlalia and then moved to the MNHN where he is a curator of vertebrate fossils. He has a broad interest in vertebrate paleontology but his interest focuses on the Permo-Triassic fauna and their depositional environments including early synapsids and reptiles.