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SOURCE CODE FOR THEORETICAL MORPHOLOGIC SIMULATION
OF HELICAL COLONY FORM IN THE BRYOZOA
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ABSTRACT

The analytic techniques of theoretical morphology involve the computer simula-
tion of both existent and nonexistent biological form, and the subsequent analysis of
the distribution and evolution of biological form within theoretical morphospaces. In this
contribution we make available the computer source code used in the simulation of
hypothetical helical colony forms found in the Bryozoa—colony forms that have been
convergently evolved multiple times in the evolutionary history of the phylum.
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INTRODUCTION: 
THE ANALYTICAL POTENTIAL 

OF THEORETICAL MORPHOLOGY

"A second reason for giving theoretical morphology
a good run for its money is that, in many ways, it is
unlike other sciences. In A New Kind of Science
(2002) Stephen Wolfram has controversially sug-
gested that science in the future will be more con-
cerned with algorithms than laws. One wonders
how that could be true of all science, but if there is
any science of which this is clearly true, that sci-
ence is theoretical morphology."

Maclaurin (2003, p.465)

The inspiration for "theoretical morphology"
(Raup and Michelson 1965) lies in the morphoge-
netic simulation of actual growth processes in
nature and in the search for the general growth
"rules" governing the generation of biological form.
In this aspect of the discipline, it can be viewed as
an algorithmic approach to the analysis of evolu-
tionary development, as opposed to an experimen-
tal one. Yet theoretical morphology is much more
than "Computer EvoDevo"! The developmental
models created in a theoretical morphologic analy-
sis can be used not only to simulate existing bio-
logical form, but also to generate hypothetical
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biological form that, although geometrically possi-
ble, has never been evolved by any known living
organisms on Earth. The very existence of nonex-
istent form is of immediate significance to the evo-
lutionary theorist—why hasn't nature produced this
form? The answer to this question leads both the
theorist and experimentalist to the analysis of the
roles of adaptation, natural selection, and evolu-
tionary constraint in the shaping of biological form
(for a more extensive discussion of the analytic
techniques of theoretical morphology see McGhee
1999, 2001, 2007).

Many years ago, we became interested in the
intricate and elegant helical colony forms evolved
by species of the bryozoan genus Archimedes
(McKinney and Raup 1982). Although Archimedes
is long extinct, similar helical colony forms have
been convergently evolved in species of the living
genus Bugula turrita (McKinney 1980). In fact, fur-
ther analysis has revealed that helical colony forms
have been convergently, independently, evolved no
less that six separate times within the Phylum Bry-
ozoa (McKinney and McGhee 2003). Why have

bryozoan colonies repeatedly evolved helically
coiled colonies? And how do they produce these
colony forms? Lastly, are there geometrically pos-
sible helical forms that they have never produced,
and why not? These questions are of the very
essence of theoretical morphology.

In our initial studies, we demonstrated that the
helical colony form—although very intricate in
appearance—could be computer simulated by a
model having only five geometric parameters
(McKinney and Raup 1982). Thus, far from being
difficult to develop, the fact that the morphogenesis
of helical colonies is algorithmically simple may be
a large factor in its repeated evolution within the
bryozoans. In our subsequent studies, we have
taken the geometric parameters of the helical col-
ony model and created a theoretical morphospace
of hypothetical, and potential, bryozoan colony
form (Figure 1). Exploration of this morphospace to
date has revealed that it is very unevenly filled by
actual bryozoans through geologic time, and that
the "full" (Figure 2) versus "empty" (Figure 3)
regions of the morphospace appear largely to be

Figure 1.  A two-dimensional slice through the three-dimensional theoretical morphospace of helical colony morphol-
ogies illustrating the range in form produced by varying the parameters BWANG and ELEV, where the parameter
XMIN is held constant at 20.  The simulations were produced by the computer program given in this paper.  For pur-
poses of visual presentation the morphospace axes are not arithmetic.
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Figure 2.  Simulations of existent helical colony morphologies in fossil and living bryozoans.  The polygons in the
morphospace illustrate the measurement field of measurements taken from: (1) Paleozoic Archimedes laxus, (2)
Paleozoic basinal Archimedes ecomorphs, (3) Paleozoic back-shoal Archimedes ecomorphs, (4) living Bugula colo-
nies, except B. plumosa colonies, (5) living Bugula plumosa, (6) Eocene Crisidmonea archimediformis, and (7) living
Retiflustra cornea.  Data polygons from McKinney and McGhee (2003).
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Figure 3.  Simulation of nonexistent helical colony morphologies.  Data polygons of real fossil and living bryozoan col-
onies as in Figure 2.
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due to functional constraints – that is, the existent
forms make efficient filtering geometries, and the
nonexistent forms do not (McGhee and McKinney
2000, 2002; McKinney and McGhee 2003, 2004).

In the spirit of Stephen Wolfram's (2002)
vision of a science "more concerned with algo-
rithms than laws," we are making available the
algorithms of the helical colonies model in this brief
paper. We feel we have just scratched the surface
of understanding why these intricate forms have
convergently reappeared during bryozoan evolu-
tion, and we wish to make the code available for
others to experiment with. We also encourage oth-
ers to take the code and modify it to simulate other
helical aspects of form in nature, beyond those
found (or not found) within the Bryozoa.

THE HELICAL COLONY MODEL

The helical colony model has five basic geo-
metric parameters (see McKinney and Raup 1982,
figure 3).  Two parameters determine the geometry
of the central helix of the colony:

1. ELEV: the rate of climb of the helix (a mea-
sure of the repeat distance, or pitch, of the
helix), and 

2. RAD: the radius of the helix.
Three parameters determine the geometric
arrangement of the filtration-sheet whorls that
are attached to the helix axis and the pattern
of branching within the whorls:

3. ANG:  the radial angle between the initial
branches that originate from the central helix
of the colony (a measure of the density of the
initial branches in the core of the colony),

4. BWANG:  the angle between the branches in
the filtration-sheet whorls and the axis of the
central helix of the colony, and

5. XMIN:  the minimum distance between the
outer two of three adjacent branches within
the filtration-sheet whorls, at the point at
which the central branch bifurcates.  This
parameter controls the frequency of branch-
ing, and hence the density of the branches,
within the filtration-sheet whorls.
The geometric parameters ELEV, BWANG,

and XMIN have been used to construct a three-
dimensional morphospace of hypothetical helical
colony forms in bryozoans (McKinney and Raup
1982), a morphospace that has subsequently been
used in the analysis of actual helical colony forms
in both extinct and living bryozoans (McGhee and

McKinney 2000, 2002; McKinney and McGhee
2003, 2004).

THE HELICAL COLONY 
COMPUTER PROGRAM

The helical colony computer program is writ-
ten in VISUAL BASIC, the code of which is pro-
vided in the Appendix (the code was originally
written in VB 3.0, but subsequently modified and
expanded, and now runs in VB 6.0).  An execut-
able version of the code is also available in the
Appendix. This program was used in producing the
simulations shown in Figure 1.  The default values
of the parameters are set so as to produce an initial
simulation approximating that of the colony form
illustrated in figure 2 of McKinney and Raup
(1982); that is, ELEV = 0.17, BWANG = 60, XMIN
= 20, ANG = 45, and RAD = 2.  These parameter
settings can be changed by simply pressing the
desired button that appears on the monitor screen
adjacent to each simulation, whereupon the pro-
gram will prompt the user that the parameter val-
ues have been changed.  Press the "Run Again"
button, and the new simulation will appear on the
screen.

In addition to the original five geometric
parameters of McKinney and Raup (1982), this
version of the program also allows the user to
specify the number of whorls produced in the simu-
lation and the number of growth increments
(defaults are set at 2.8 whorls and 25 growth incre-
ments).  The user may also change the growth gra-
dient at the distal (uppermost) whorl of the colony
simulation.  The default value is set at "Growth gra-
dient" = 1, which tapers the length of the branches
in the distal whorl from the colony diameter down
to zero at the uppermost tip of the simulation.  This
gradient in branch length reduction may be
reduced by setting the growth gradient to a value <
1; a value of zero eliminates the growth gradient,
and the branches in the distal whorl will grow to the
same diameter as the rest of the colony.

The parameter XMIN is subject to Gaussian
random variation to simulate natural growth varia-
tion seen in actual helical colonies (see McKinney
and Raup 1982, p. 105).  Each time the program is
run, a new random number seed is used.  The user
may also specify the random number seed to be
used in the simulation by pressing the "Random
number seed" button.

Three-dimensional stereo pairs of a simula-
tion (see McKinney and Raup 1982, figure 2) may
be produced by rotating the simulation about the z-
axis.  This can be accomplished by using the
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"Rotation" button:  first, run one simulation with
Rotation = +3 (degrees), print it, and then run a
second simulation with Rotation = –3 (degrees).
The perspective from which the simulation is
viewed may also be changed by using the "Tilt"
button, which rotates the simulation either clock-
wise or anticlockwise on the screen.  The values
for the angular program variables BWANG, ANG,
Rotation, and Tilt are all input as degrees, but all
internal computations in the program are in radi-
ans.

Scaling for the screen display is in twips,
using part of the screen area (7000 high by 7000
wide).  The program executes a "trial" run to deter-
mine the limits of the simulation picture and hence
its scaling.  The program is written to assume a
standard monitor of 1024 by 768 pixel area, with 15
twips per pixel.  Other monitors will change the
graphic output and font size; check (with WIN-
DOWS) to set screen resolution at 1024 by 768 for
best graphic results.  If the user further desires, the
position of the simulation on the computer screen
can also be moved by altering the final two lines of
code in the Convert Subroutine (i.e., xp = 4000 +
(xp – Hmin) * Pscale, and zp = 8000 – (Vmax – zp)
* Pscale), which determine the X-Y plot coordi-
nates on the screen (default values are 4000 and
8000, respectively).

HOW THE ALGORITHMS WORK

The program first executes a trial run of the
computations in order to scale the simulation to the
available computer screen area (discussed above).
This scaling run, in which nothing is plotted, is
accomplished by the outermost Do...While loop of
the program in which the value of "trial" and
"scaled" go from a value of zero to one.  Actual
plotting of the computations begins when the value
of "trial" exceeds one, during which the Convert
Subroutine is called in order to convert the cylindri-
cal coordinate computations into cartesian coordi-
nates for screen plotting.  

The growth of the central helical axis in the
colony simulation, and position of the nodes on the
helix for the basal branches of the colony, is calcu-
lated in two sequential For...Next loops in the
"Make Central Helix" and "Make Initial Growing
Tips" sections of the program.  The geometry of the
helix, and placement of the basal branch nodes, is
determined by the geometric parameters ELEV,
RAD, ANG, WHORLS, and GROW.  The values of
the model parameters ELEV, ANG, and WHORLS
(the number of whorls in the helix) can be specified
by the user for each simulation.  The parameters

RAD and GROW (the linear magnitude of each
growth increment) are set as constants in the pro-
gram (at the value of 2 and 0.5, respectively).  If
the user wishes to change these default values,
they may be changed directly in the code.

The growth of the branches in the colony sim-
ulation is calculated in the "BEGIN MAIN PRO-
GRAM" section of the code.  This entire section
consists of two subsections: (1) algorithms deter-
mining the growth of each branch tip, and (2) algo-
rithms determining when a branch bifurcates to
produce two new branches:

1. In the first subsection, the growth of all branch
tips "j" within a given growth increment "k" is
calculated in two sequential For...Next loops:
the first calculates and plots the positions of
the new tips relative to that of the old tips, and
the second rewrites the old tip positions in
terms of the new so that the next round of new
tip positions may be calculated.

2. In the second subsection, bifurcations of the
growing branches are calculated in the "Loop
for Bifurcations" section of the code.  This
section consists of an outer Do...Until loop,
and three sequential inner For...Next loops.
The first For...Next loop calculates the spatial
positions of the growing branch tips and deter-
mines when a tip must bifurcate (i.e., when
the model parameter distance XMIN is
reached).  Also within this For...Next loop is
contained the subroutine that subjects the
value of XMIN to Gaussian random variation
(as discussed above).  This section of the
code calculates the positions of the two new
tips that bifurcate from the old tip and draws
the simulation branch crossbar between them.
The next two For...Next loops save the posi-
tions of the new tips and rewrite the old tip
positions in terms of the new so that the next
round of new tip positions may be calculated.
The outer Do...Until loop iterates these three
inner For...Next loops, conducting a census
across all growing tips within the colony.
When this census is complete, the Do...Until
loop ends, and the outermost For...Next loop
of the program begins again for the next
growth increment "k."

SETTING UP THE PROGRAM

To set up the program, follow standard Visual
Basic procedure: create a Form and in its Proper-
ties Box set its BackColor property to white.  On
the left margin of the Form add 13 small Command
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buttons, and label their Caption properties consec-
utively "Run," "Exit," "Print," "ANG," "XMIN,"
"BWANG," "ELEV," "Number of whorls," "Number
of growth increments," "Random number seed,"
"Rotation," "Tilt," and "Growth gradient (1 = full, 0 =
none)."  Adjacent to the Command buttons add a
small Label Box, and label it "Parameters changed
– Press Run Again button for new morphologic
simulation."  

After the Form has been configured, double-
click on the Command1 button ("Run"), and type
the code in the Code Box.  Then click on the Start
button on the tool bar (or in the Run pull-down
menu) to run the program.  If you leave the
AutoRedraw property of the Form at the default
setting of "False" the simulation will grow in real
time on the computer screen.  In order to print the
simulation, you must set the AutoRedraw property
of the Form to "True," but this results in the simula-
tion appearing on the screen only in its final growth
stage.

FUTURE WORK

"[T]he development of software for specific use as
a teaching aid in theoretical . . . morphology is as
essential as  leading-edge research to ensure the
continued development of this field."

Savazzi (1995, p. 238)
The code given in this paper was written by

two theoretical morphologists (Raup, McGhee) in
close interaction with a bryozoan biologist (McKin-
ney) and has been produced by an evolutionary
process of trial-and-error in writing algorithms that
would best simulate the organic forms actually
seen in helical bryozoans in nature.  We hope that
it will not only stimulate further research in the
analysis of the evolution of helical colony form, but
that it will also be used as a teaching aid in illustrat-
ing the analytical techniques of theoretical mor-
phology.  Specifically, future instructors might begin
with the existing code, and seek to even more
closely model the form seen in helical bryozoans in
a series of laboratory exercises.  One obvious
aspect of bryozoan form that has not been simu-
lated at present is the presence of dissepiments –
cross-bars between the branches in the colony.
Another instructive approach would be to explore
just how far the limits of the program could be
pushed in producing nonexistent form.  For exam-
ple, the maximum values of BWANG shown in Fig-
ure 1 stop at 90 degrees – yet the program is
capable of simulating angles that exceed that
value.

Yet another future possible avenue of both
research and pedagogical significance would be to
see if similar simulations of form could be produced
with totally different algorithmic approaches, such
as the usage of L-systems (Prusinkiewicz and Lin-
denmayer 1996; for a detailed discussion of the
potential uses of L-systems in theoretical morphol-
ogy see McGhee 1999).  L-systems have been
used to produce very realistic simulations of
branching-form in plants, and we see no reason
why the approach could not also fruitfully be
applied to branching-form in animals.  Lastly, it
might also be instructive to see if the algorithms
could be simplified by using existing modeling soft-
ware such as Mathematica (Wolfram 2002).
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APPENDIX:  THE CODE1

’ In order of appearance in program:
Dim trial, scaled, CH
Dim ELEV, BWANG, ANG, XMIN
Dim GRAD, NG, WHORLS, StartSeed
Dim Yr, YrD, Zr, ZrD  ’ For Sub Convert
Dim sigma, GROW, RAD, aXMIN
Dim seed, Bseed, Nit
Dim Pscale
Dim Hmin, Hmax, Vmin, Vmax
Dim pi, x, y, z
Dim j As Single
Dim jr ’ To carry angle "j" to Sub Convert
Dim jj, k, kk
Dim tip(2000, 4), Ntip(2000, 4), Ttip(2000, 4)
’ 4 tip subscripts = x, y, z, rotation angle "j"
Dim xp, yp, zp’ Plotting coordinates from Sub Convert
Dim g
Dim X1, Y1, z1
Dim xx, yy, zz
Dim A1, A2
Dim tip1x, tip1y, tip2x, tip2y

Private Sub Command1_Click()
trial = 0
Cls
scaled = 0
Do

WindowState = 2
Label1.Visible = False
If CH <> 1 Then’ CH = 1 indicates default values changed by user input

’----------Set Default Parameter and Variable Values----------
ELEV = 0.17’ MODEL PARAMETERS of McKinney & Raup (1982)
BWANG = 60
ANG = 45
XMIN = 20

’ OTHER VARIABLES:
GRAD = 1’ Growth gradient at distal tip of helix
NG = 25 ’ Number of growth increments
WHORLS = 2.8’ Number of whorls in the helix
StartSeed = 54321’ Initial random number seed
YrD = 0 ’ Initial rotation around the y-axis
ZrD = 0 ’ Initial rotation around the z-axis

ElseIf CH = 1 Then End If
’----------Constants (can be changed in the source code)----------

sigma = 0.05’ Limit for random number generator
GROW = 0.5’ Linear growth per increment
RAD = 2 ’ Radius of central helix
aXMIN = XMIN / 2’ Scaled to McKinney & Raup (1982) simulations

’----------Increment random number seed ("Try again" button)----------
Bseed = StartSeed + Nit
seed = Bseed
Nit = Nit + 1
Randomize (seed)

’----------Scaling Trial Run (without plotting; checks screen scale)----------
trial = trial + 1

1.Zipped program files are available from the PE website at this URL: http://palaeo-electronica.org/2006_2/helical/index.html 
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If scaled = 0 Then
Pscale = 1
Hmin = 10000: Hmax = -10000: Vmin = 10000: Vmax = -10000

ElseIf scaled <> 0 Then End If
pi = 4 * Atn(1)’ Establish value of pi
Offset = pi / 4’ Default orientation, McKinney & Raup (1982, fig. 2)
Command1.Caption = "Please wait . . . "

’----------Make Central Helix----------
x = RAD * Cos(Offset)
y = -RAD * Sin(Offset)
z = -ELEV * 360 / 5 * Offset / (2 * pi)
jr = Offset: Call convert
If trial > 1 Then Line (xp, zp) - (xp, zp)
For j = Offset To WHORLS * 2 * pi + 2 * pi / 36 + 0.01 Step 2 * pi / 36
’ Line segments 10 degrees each

x = RAD * Cos(j)
y = -RAD * Sin(j)
z = -ELEV * 360 / 5 * j / (2 * pi)
jr = j: Call convert
If trial > 1 Then Line  - (xp, zp)
jj = j

Next j
’----------Make Initial Growing Tips ANG degrees apart----------
’----------(jj is total rotation through all whorls in radians)----------

k = 1
For j = Offset to jj + 0.01 Step 2 * pi / (360 / ANG)

k = k + 1
x = (GROW + RAD) * Cos(j)’ New tip
y = -(GROW + RAD) * Sin(j)
jr = j: Call convert: If trial > 1 Then Line (xp, zp) - (xp, zp)
If trial <= 1 Then

If zp < Vmin Then Vmin = zp: If zp > Vmax Then Vmax = zp
If xp > Hmax Then Hmax = xp: If xp < Hmin Then Hmin = xp

ElseIf trial > 1 Then End If
tip(k, 1) = x’ Record growing tip
tip(k, 2) = y
tip(k, 4) = j’ Rotation angle for this tip
x = RAD * Cos(j)’ Point on helix
y = -RAD * Sin(j)
jr = j: Call convert: If trial > 1 Then Line  -(xp, zp)
If trial <= 1 Then

If zp < Vmin Then Vmin = zp: If zp > Vmax Then Vmax = zp
If xp > Hmax Then Hmax = xp: If xp < Hmin Then Hmin = xp

ElseIf trial > 1 Then End If
kk = j

Next j
’----------(invisible boundaries to avoid edge effects at termini of helix)----------
’ start boundary

x = (GROW + RAD) * Cos(Offset - pi / (360 / ANG))
y = -(GROW + RAD)  * Sin(Offset  - pi / (360 / ANG))

’ record starting boundary
tip(1, 1) = x: tip(1, 2) = y: tip(1, 4) = -pi / (360 / ANG) + Offset

’ end boundary
x = (GROW + RAD) * Cos(kk + pi / (360 / ANG))
y = -(GROW + RAD) * Sin(kk + pi / (360 / ANG))

’ record ending boundary
tip(k + 1, 1) = x: tip(k + 1, 2) = y: tip(k + 1, 4) = kk + pi / (360 / ANG)
Ntips = k + 1

’----------BEGIN MAIN PROGRAM (Grow All Tips in Colony)----------
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For k = 2 To NG’ Calculate each growth increment "k"
For j = 1 To Ntips’ For each growing tip at "j"

If tip(j, 4) < jj - 2 * pi Or jj < 2 * pi Then
’ Normal growth if WHORLS <= 1

Ntip(j, 1) = (k * GROW + RAD)  * Cos(tip(j, 4))
Ntip(j, 2) = -(k * GROW + RAD) * Sin(tip(j, 4))

ElseIf tip(j, 4) >= jj - 2 * pi And GRAD > 0 Then
’ Reduced growth for final whorl (using GRAD)

Ntip(j, 1) = (k * GROW * (1 - GRAD * (tip(j, 4) - _ 
(jj - 2 * pi)) / (2 * pi)) + RAD) * Cos(tip(j, 4))

Ntip(j, 2) = -(k * GROW * (1 - GRAD * (tip(j, 4) - _ 
(jj - 2 * pi)) / (2 * pi)) + RAD) * Sin(tip(j, 4))

End If
Ntip(j, 4) = tip(j, 4)

’ Plot new tip, end of old tip
x = tip(j, 1): y = tip(j, 2): jr = tip(j, 4): Call convert
If j > 1 And j < Ntips And trial > 1 Then Line (xp, zp) - (xp, zp)
If trial <= 1 Then

If zp < Vmin Then Vmin = zp
If zp > Vmax Then Vmax = zp

If xp > Hmax Then Hmax = xp
If xp < Hmin Then Hmin = xp

ElseIf trial > 1 Then End If
’ Start of new tip

x = Ntip(j, 1): y = Ntip(j, 2): jr = tip(j, 4): Call convert
If j > 1 And j < Ntips And trial > 1 Then Line  -(xp, zp)
If trial <= 1 Then

If zp < Vmin Then Vmin = zp: If zp > Vmax Then Vmax = zp
If xp > Hmax Then Hmax = xp: If xp < Hmin Then Hmin = xp

ElseIf trial > 1 Then End If
Next j

’ Rewrite tip(j, 1), tip(j, 2), & tip(j, 4)
For j = 1 To Ntips

tip(j, 1) = Ntip(j, 1)
tip(j, 2) = Ntip(j, 2)
tip(j, 4) = Ntip(j, 4)

Next j
’----------Loop for Bifurcations due to XMIN----------

LastSplit = 0
Do ’ Census all growing tips for those that need to bifurcate

For j = LastSplit + 2 To Ntips - 1
x = tip(j - 1, 1): y = tip(j - 1, 2): jr = tip(j - 1, 4): Call convert

’ x-y-z position of point at angle = j - 1
X1 = xp: Y1 = yp: z1 = zp

’ x-y-z position of point at angle = j + 1
x = tip(j + 1, 1): y = tip(j + 1, 2): jr = tip(j + 1, 4): Call convert
xx = xp - X1: yy = yp - Y1: zz = zp - z1

’ Distance between points in 3D
dist = Sqr(xx * xx + yy * yy + zz * zz)

’ Get a random number from normal distribution
Call Rng

’ Limit deviation from XMIN to 0.5
If Abs(g) > 0.5 Or g = 0 Then Call Rng

’ Bifurcate if the following condition holds:
If dist / Pscale > (1 - g) * (aXMIN / 5) Then Exit For

Next j
If j >= Ntips - 1 Then Exit Do

’ Calculate bifurcate at "j":
A1 = tip(j, 4) - (1 / 6) * (tip(j + 1, 4) - tip(j - 1, 4))
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A2 = tip(j, 4) + (1 / 6) * (tip(j + 1, 4) - tip(j - 1, 4))
If tip(j, 4) < jj - 2 * pi Or jj < 2 * pi Then

’ Normal growth if WHORLS <= 1
tip1x = (k * GROW + RAD) * Cos(A1)
tip1y = -(k * GROW + RAD) * Sin(A1)
tip2x = (k * GROW + RAD) * Cos(A2)
tip2y = -(k * GROW + RAD) * Sin(A2)

ElseIf tip(j, 4) >= jj - 2 * pi And GRAD > 0 Then
’ Reduced growth for final whorl (using GRAD)

tip1x = (k * GROW * (1 - GRAD * (tip(j, 4) - _ 
(jj - 2 * pi)) / (2 * pi)) + RAD) * Cos(A1)

tip1y = -(k * GROW * (1 - GRAD * (tip(j, 4) - _ 
(jj - 2 * pi)) / (2 * pi)) + RAD) * Sin(A1)

tip2x = (k * GROW * (1 - GRAD * (tip(j, 4) - _ 
(jj - 2 * pi)) / (2 * pi)) + RAD) * Cos(A2)

tip2y = -(k * GROW * ( 1 - GRAD * (tip(j, 4) - _ 
(jj - 2 * pi)) / (2 * pi)) + RAD) * Sin(A2)

End If
’ Draw crossbar

x = tip1x: y = tip1y: jr = A1: Call convert
If k < NG And trial > 1 Then Line (xp, zp) - (xp, zp)
x = tip2x: y = tip2y: jr = A2: Call convert
If k < NG And trial > 1 Then Line  -(xp, zp)

’ Save tips in Ttip( )
For m = 1 To Ntips

Ttip(m, 1) = tip(m, 1)
Ttip(m, 2) = tip(m, 2)
Ttip(m, 4) = tip(m, 4)

Next m
’ Rewrite tip( ), inserting new tips

tip(j, 1) = tip1x: tip(j, 2) = tip1y: tip(j, 4) = A1
tip(j + 1, 1) = tip2x: tip(j + 1, 2) = tip2y: tip(j + 1, 4) = A2
For n = j + 1 To Ntips

tip(n + 1, 1) = Ttip(n, 1)
tip(n + 1, 2) = Ttip(n, 2)
tip(n + 1, 4) = Ttip(n, 4)

Next n
Ntips = Ntips + 1
LastSplit = j + 1

’ Return to bifurcation census:
Loop Until j = Ntips - 1

’ Return for next growth increment:
Next k
If trial = 1 Then scaled = 1

’ Scaling trial complete:
Loop While trial = 1
’----------END MAIN PROGRAM----------
’----------Screen display of parameter values----------
CurrentX = 100: CurrentY = 8000
Print "   ANG = "; ANG
Print "   XMIN = "; XMIN
Print "   BWANG = "; BWANG
Print "   ELEV = "; ELEV
Print " "
Print "   Whorls: "; WHORLS
Print "   Number of growth increments: "; NG
Print "   Growth gradient: "; GRAD
Print "   Rotation: "; ZrD
Print "   Tilt: "; YrD
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Print "   Starting Seed = "; StartSeed
CurrentY = 7500
Beep
Command1.Caption = "Run Again"
Command2.Visible = True
Command3.Visible = True
Command4.Visible = True
Command5.Visible = True
Command6.Visible = True
Command7.Visible = True
Command8.Visible = True
Command9.Visible = True
Command10.Visible = True
Command11.Visible = True
Command12.Visible = True
Command13.Visible = True
scaled = 0
End Sub

’----------COMMAND BUTTONS----------
Private Sub Command10_Click()
’----------Random Number Seed Button----------
Lt = InputBox ("Random number seed", "HIT ENTER for no change", StartSeed, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of seed
StartSeed = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command11_Click()
’----------Rotation Angle (degrees) Button----------
Lt = InputBox("Rotation in degrees about vertical axis (negative for clockwise)", _ 

"HIT ENTER for no change", ZrD, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of rotation
ZrD = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command12_Click()
’----------Tilt Angle (degrees) Button----------
Lt = InputBox("Tilt in degrees (negative for clockwise)", _ 

"HIT ENTER for no change", YrD, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of tilt
YrD = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command13_Click()
’----------Growth Gradient Button----------
’ GRAD = 0 for no growth gradient
’ GRAD = 1 for full gradient (i.e., zero growth at distal tip)
Lt = InputBox("Growth gradient", "HIT ENTER for no change", GRAD, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of gradient 
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GRAD = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command2_Click()
End
End Sub

Private Sub Command3_Click()
Command1.Visible = False
Command2.Visible = False
Command3.Visible = False
Command4.Visible = False
Command5.Visible = False
Command6.Visible = False
Command7.Visible = False
Command8.Visible = False
Command9.Visible = False
Command10.Visible = False
Command11.Visible = False
Command12.Visible = False
Command13.Visible = False
Form1.PrintForm
Printer.EndDoc
Command1.Visible = True
Command2.Visible = True
Command3.Visible = True
Command4.Visible = True
Command5.Visible = True
Command6.Visible = True
Command7.Visible = True
Command8.Visible = True
Command9.Visible = True
Command10.Visible = True
Command11.Visible = True
Command12.Visible = True
Command13.Visible = True
End Sub

Private Sub Command4_Click()
’----------Model Parameter ANG Button----------
Lt = InputBox("ANG in degrees", "HIT ENTER for no change", ANG, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of ANG
ANG = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command5_Click()
’----------Model Parameter XMIN Button----------
Lt = InputBox("XMIN", "HIT ENTER for no change", XMIN, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of XMIN
XMIN = Lt
aXMIN = XMIN / 2
Command1.SetFocus
Label1.Visible = True
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End Sub

Private Sub Command6_Click()
’----------Model Parameter BWANG Button----------
Lt = InputBox("BWANG in degrees", "HIT ENTER for no change", BWANG, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of BWANG
BWANG = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command7_Click()
’----------Model Parameter ELEV Button----------
Lt = InputBox("ELEV", "HIT ENTER for no change", ELEV, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of ELEV
ELEV = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command8_Click()
’----------Number of Whorls Button----------
Lt = InputBox("Number of Whorls", "HIT ENTER for no change", WHORLS, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of WHORLS
WHORLS = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub Command9_Click()
’----------Number of Growth Increments----------
Lt = InputBox("Number of growth increments", "HIT ENTER for no change", NG, 4000, 4000)
If Len(Lt) = 0 Then Exit Sub
CH = 1 ’ bypass default value of increments
NG = Lt
Command1.SetFocus
Label1.Visible = True
End Sub

Private Sub convert()
’----------Convert Subroutine----------
’ Given x, y, BWANG, and angle in radians (jr), returns plotting coordinates: xp & zp
’ plus yp for evaluating distance  between branches (and for rotation and tilt)
xh = RAD * Cos(jr)’  Point on helix at this rotation angle (jr)
yh = -RAD * Sin(jr)
zh = -ELEV * 360 / 5 * jr / (2 * pi)’ Elevation of point on helix
d = Sqr((y - yh) ^ 2 + (x - xh) ^ 2)’ Distance from x, y to point on helix
dp = d * Cos(pi * (90 - BWANG) / 180)’ Distance from x, y to helix after elevation
zp = zh - d * Sin(pi * (90 - BWANG) / 180)’ z-value for plotting
xp = xh + dp * Cos(jr)’ x-value for plotting
yp = yh - dp * Sin(jr)’ y-value for computing ’dist’ and plotting (IF NEEDED)
’ Rotation around y-axis (Yr) and/or z-axis (Zr):
Yr = YrD ’ Negative for clockwise
Zr = ZrD ’ Negative for clockwise
Yr = Yr - 90: Yr = pi * Yr / 180: Zr = Zr + 180: Zr = pi * Zr / 180
yyy = xp * Sin(Zr) + yp * Cos(Zr)
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xxx = xp * Cos(Zr) * Sin(Yr) - yp * Sin(Zr) * Sin(Yr) + zp * Cos(Yr)
zzz = xp * Cos(Zr) * Cos(Yr) - yp * Sin(Zr) * Cos(Yr) - zp * Sin(Yr)
xp = xxx: yp = yyy: zp = zzz
If scaled = 0 Then Exit Sub
’ Scale xp, zp for plotting:
If Abs(Hmax - Hmin) > Abs(Vmax - Vmin) Then _ 

Pscale = 7000 / (Hmax - Hmin) Else Pscale = 7000 / (Vmax - Vmin)
xp = 4000 + (xp - Hmin) * Pscale
zp = 8000 - (Vmax - zp) * Pscale
End Sub

Private Sub Form_Load()
WindowState = 2
Command2.Visible = False
Command3.Visible = False
Command4.Visible = False
Command5.Visible = False
Command6.Visible = False
Command7.Visible = False
Command8.Visible = False
Command9.Visible = False
Command10.Visible = False
Command11.Visible = False
Command12.Visible = False
Command13.Visible = False
Label1.Visible = False
End Sub

Private Sub Rng()
’----------Random Number Subroutine----------
’ Random number generator (crude but works).
’ Yields normally distributed values (’g’) with mean of zero and
’   standard deviation = ’sigma’.
r3 = 2
Do Until r3 < 1

r1 = 2 * Rnd - 1
r2 = 2 * Rnd - 1
r3 = r1 * r1 + r2 * r2

Loop
r3 = Sqr((-2 * Log(r3)) / r3)
g = sigma * (r1 * r3)
End Sub


