Home

Article Search

Table 1. Sample data table to illustrate how a spreadsheet should be set up for ADAPTS.

TAXON I.D. FIRST
APPEARANCE
DATUM
LAST
APPEARANCE
DATUM
RANGE ANCESTOR
1 575 564.1 10.9 0
2 574.4 555.7 18.7 1
3 565 542.9 22.1 1
4 564.6 563.8 0.8 2
5 564.1 563.7 0.4 1
6 562.3 552.7 9.6 2
7 560.2 551.9 8.3 2
8 558.4 552.6 5.8 2
9 557.4 556.5 0.9 7
10 555.2 554.9 0.3 8

Table 2. A hypothetical life table, showing constant probability of extinction, after Raup (1975).

Age class
(x)
No. of extinctions in interval
(dx)
Survivors at start of interval
(lx)
Mortality rate
(qx)
0 4000 10000 0.4
1 2400 6000 0.4
2 1440 3600 0.4
3 860 2160 0.4
4 526 1300 0.4
5 312 774 0.4
6 186 462 0.4
7 114 276 0.4
8 66 162 0.4
9 42 96 0.4
>=10 54 54 _ _

Table 3. Table showing the results of Epstein's Test for the three survivorship curves for the random tree.

ST n SUM (r-1) lives UPPER LIMIT LOWER LIMIT LINEAR?
DYNAMIC 986 4787477.2 4940824.06 4596930.34 Y
CSS 986 4805056.27 4934671.26 4591206.38 Y
EISS 986 452943.89 475359.31 442273.17 Y

Table 4. Results of the A-D tests for the TREE GROWTH data. For the extinction tests, the "A" and "D" columns refer to the numbers of ancestors that outlive their descendants and vice versa. For the speciation tests the "A" and "D" columns tally the number of ancestors, in the previous branching event that gave rise to the next taxon, and vice versa.

ST n "A" "D" CHI SQUARED (df=1) ACCEPT NULL HYPOTHESIS?
EXTINCTION 986 506 473 1.11 Y (p>0.1)
SURVIVORSHIP "CONTROL" 986 473 507 1.18 Y (p>0.1)
SPECIATION 986 489 495 0.04 Y (p>0.1)
SPECIATION (RESTRICTED) 986 334 328 0.05 Y (p>0.1)

logo smallPalaeontologia Electronica
Webmaster
1998–2020
23 years of electronic palaeontology

PE is archived by CLOCKSS and LOCKSS programs.