TABLE 1. Modern counting categories. | |
Categories | |
1 | Orbulina universa |
2 | Globigerinoides |
3 | Globigerinoides sacculifer |
4 | Sphaeroidinella |
5 | Globigerina aequilateralis |
6 | Globigerina bulloides |
7 | Globigerina falconensis |
8 | Globigerina rubescens |
9 | Turborotalita quinqueloba |
10 | Neogloboquadrina pachyderma (s) |
11 | Neogloboquadrina pachyderma (d) |
12 | Neogloboquadrina dutertrei |
13 | Globorotalia |
14 | Globorotalia crassaformis |
15 | "dupac" |
16 | Globorotalia hirsuta |
17 | Globorotalia scitula |
18 | Globorotalia menardii |
19 | Globigerinita glutinata |
20 | Globigerina digitata |
21 | Other |
Sample |
Depth (m) |
Dentoglobigerina altispira |
Globigerina bulloides |
Globigerina decoraperta |
Globigerina falconensis |
Globigerina incisa |
Globigerina nepenthes |
Globigerina praedigitata |
Globigerina woodi |
Globigerinella aequilateralis |
Globigerinita glutinata |
Globigerinoides conglobatus |
Globigerinoides obliquus |
Globigerinoides ruber |
Globigerinoides sacculifer |
Globorotalia crassaformis |
Globorotalia crassaformis (keeled) |
Globorotalia hirsuta |
Globorotalia margaritae |
Globorotalia menardii |
Globorotalia puncticulata/inflata |
Globorotalia scitula |
Globorotalia sp. |
Globorotalia tumida |
Globorotalia ungulata |
Neogloboquadrina "dupac" |
Neogloboquadrina acostaensis |
Neogloboquadrina atlantica (sinistral) |
Neogloboquadrina atlantica (dextral) |
Neogloboquadrina dutertrei |
Neogloboquadrina pachyderma (sinistral) |
Neogloboquadrina pachyderma (dextral) |
Orbulina universa |
Pulleniatina obliquiloculata |
Sphaeroidinellopsis subdehiscens |
Turborotalita quinqueloba |
Other |
Total planktics |
Fragments |
Benthics |
8-6-43 |
73.43 |
0 |
8 |
12 |
18 |
18 |
0 |
0 |
27 |
1 |
96 |
0 |
16 |
43 |
5 |
3 |
0 |
0 |
1 |
7 |
1 |
3 |
3 |
0 |
0 |
7 |
12 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
6 |
7 |
297 |
90 |
8 |
10-1-26 |
84.76 |
12 |
12 |
8 |
21 |
34 |
0 |
2 |
17 |
3 |
26 |
1 |
44 |
57 |
36 |
27 |
0 |
0 |
0 |
21 |
39 |
11 |
16 |
6 |
7 |
0 |
6 |
3 |
5 |
1 |
0 |
2 |
5 |
0 |
6 |
1 |
9 |
438 |
150 |
13 |
10-1-50 |
85.00 |
2 |
4 |
1 |
12 |
28 |
0 |
2 |
21 |
0 |
21 |
0 |
21 |
42 |
17 |
21 |
0 |
2 |
0 |
24 |
4 |
3 |
10 |
3 |
4 |
4 |
4 |
0 |
2 |
0 |
0 |
2 |
1 |
0 |
3 |
0 |
7 |
265 |
120 |
19 |
10-1-101 |
85.51 |
12 |
2 |
2 |
15 |
37 |
1 |
3 |
32 |
4 |
27 |
2 |
29 |
57 |
19 |
35 |
0 |
5 |
0 |
16 |
11 |
4 |
17 |
4 |
7 |
0 |
14 |
2 |
8 |
0 |
0 |
2 |
2 |
0 |
2 |
0 |
6 |
377 |
120 |
16 |
10-2-25 |
86.25 |
2 |
1 |
4 |
19 |
20 |
0 |
1 |
22 |
1 |
27 |
0 |
15 |
50 |
25 |
21 |
11 |
4 |
1 |
15 |
12 |
5 |
13 |
5 |
5 |
6 |
10 |
1 |
1 |
2 |
0 |
3 |
3 |
0 |
4 |
0 |
2 |
311 |
120 |
11 |
10-2-101 |
87.01 |
3 |
7 |
4 |
14 |
44 |
3 |
4 |
20 |
5 |
29 |
6 |
39 |
46 |
43 |
18 |
6 |
4 |
1 |
32 |
25 |
3 |
19 |
13 |
5 |
1 |
12 |
2 |
3 |
1 |
0 |
3 |
3 |
0 |
8 |
0 |
6 |
432 |
150 |
13 |
10-3-26 |
87.76 |
11 |
6 |
3 |
19 |
21 |
2 |
6 |
16 |
3 |
22 |
2 |
47 |
48 |
27 |
21 |
3 |
3 |
0 |
32 |
14 |
9 |
16 |
8 |
7 |
2 |
12 |
3 |
6 |
2 |
0 |
0 |
4 |
0 |
8 |
0 |
4 |
387 |
180 |
26 |
10-3-102 |
88.52 |
14 |
7 |
5 |
9 |
45 |
3 |
7 |
27 |
5 |
40 |
6 |
32 |
60 |
33 |
33 |
8 |
0 |
0 |
26 |
11 |
10 |
27 |
8 |
5 |
6 |
19 |
3 |
3 |
1 |
1 |
3 |
4 |
0 |
9 |
1 |
10 |
481 |
180 |
20 |
10-4-27 |
89.27 |
3 |
6 |
4 |
9 |
50 |
1 |
10 |
26 |
4 |
30 |
2 |
34 |
50 |
32 |
15 |
3 |
4 |
3 |
33 |
13 |
7 |
15 |
7 |
7 |
6 |
10 |
4 |
3 |
3 |
2 |
1 |
0 |
0 |
3 |
0 |
7 |
407 |
120 |
15 |
10-4-101 |
90.01 |
9 |
3 |
2 |
15 |
40 |
3 |
8 |
13 |
3 |
17 |
2 |
10 |
64 |
17 |
17 |
2 |
1 |
1 |
16 |
12 |
6 |
14 |
2 |
2 |
2 |
9 |
4 |
7 |
1 |
0 |
1 |
2 |
0 |
5 |
0 |
9 |
319 |
120 |
14 |
10-5-26 |
90.76 |
7 |
10 |
2 |
7 |
36 |
0 |
2 |
18 |
0 |
21 |
1 |
16 |
47 |
31 |
18 |
3 |
1 |
3 |
32 |
6 |
6 |
19 |
4 |
7 |
3 |
13 |
4 |
6 |
0 |
1 |
1 |
3 |
0 |
6 |
0 |
12 |
346 |
120 |
22 |
10-5-101 |
91.51 |
4 |
4 |
10 |
11 |
27 |
0 |
5 |
29 |
3 |
41 |
2 |
17 |
75 |
34 |
26 |
0 |
1 |
0 |
21 |
5 |
10 |
20 |
2 |
7 |
1 |
11 |
1 |
0 |
2 |
0 |
0 |
3 |
1 |
13 |
0 |
11 |
397 |
120 |
10 |
10-6-16 |
92.16 |
14 |
3 |
4 |
4 |
25 |
0 |
3 |
37 |
2 |
26 |
1 |
11 |
57 |
29 |
29 |
1 |
1 |
0 |
29 |
9 |
13 |
15 |
4 |
2 |
3 |
5 |
3 |
3 |
1 |
0 |
3 |
1 |
1 |
7 |
0 |
9 |
355 |
140 |
8 |
Sample |
Depth (m) |
Dentoglobigerina altispira |
Globigerina bulloides |
Globigerina incisa |
Globigerina sp. |
Globigerina woodi |
Globigerinita glutinata |
Globigerinoides conglobatus |
Globigerinoides nepenthes |
Globigerinoides obliquus |
Globigerinoides ruber |
Globigerinoides rubescens |
Globigerinoides sacculifer |
Globorotalia menardii |
Globorotalia scitula |
Globorotalia sp. |
Globorotalia tumida |
Neogloboquadrina |
Neogloboquadrina acostaensis |
Orbulina universa |
Pulleniatina obliquiloculata |
Sphaeroidinellopsis subdehiscens |
Other |
Total planktics |
Benthics |
2-7-31 |
9.31 |
1 |
0 |
5 |
0 |
2 |
3 |
4 |
36 |
62 |
6 |
2 |
3 |
0 |
0 |
24 |
0 |
1 |
0 |
24 |
0 |
74 |
16 |
263 |
28 |
3-1-48 |
15.48 |
16 |
0 |
6 |
0 |
1 |
1 |
10 |
127 |
48 |
0 |
1 |
2 |
4 |
0 |
14 |
2 |
0 |
0 |
20 |
0 |
74 |
11 |
337 |
18 |
3-2-31 |
16.81 |
9 |
0 |
5 |
0 |
3 |
1 |
8 |
0 |
62 |
3 |
0 |
4 |
2 |
0 |
3 |
2 |
2 |
0 |
14 |
1 |
106 |
11 |
236 |
23 |
3-2-111 |
17.61 |
14 |
0 |
6 |
1 |
9 |
0 |
18 |
57 |
90 |
2 |
9 |
18 |
3 |
1 |
4 |
1 |
0 |
1 |
21 |
1 |
67 |
17 |
340 |
15 |
3-3-35 |
18.35 |
1 |
0 |
0 |
0 |
2 |
3 |
6 |
106 |
70 |
2 |
5 |
14 |
1 |
1 |
1 |
0 |
0 |
0 |
8 |
0 |
86 |
24 |
330 |
26 |
3-3-111 |
19.11 |
2 |
1 |
0 |
0 |
4 |
0 |
4 |
72 |
49 |
1 |
2 |
15 |
0 |
0 |
8 |
0 |
0 |
0 |
15 |
0 |
80 |
30 |
283 |
29 |
3-4-35 |
19.85 |
7 |
0 |
0 |
0 |
2 |
0 |
7 |
87 |
58 |
5 |
7 |
6 |
0 |
0 |
1 |
0 |
0 |
0 |
26 |
0 |
112 |
29 |
347 |
36 |
Sample |
Depth (m) |
Dentoglobigerina altispira |
Globigerina bulloides |
Globigerina decoraperta |
Globigerina falconensis |
Globigerina incisa |
Globigerina sp. |
Globigerina woodi |
Globigerinella aequilateralis |
Globigerinita glutinata |
Globigerinoides conglobatus |
Globigerinoides obliquus |
Globigerinoides ruber |
Globigerinoides sacculifer |
Globorotalia conomiozea |
Globorotalia hirsuta |
Globorotalia menardii |
Globorotalia pseudobesa |
Globorotalia puncticulata/inflata |
Globorotalia scitula |
Globorotalia sp. |
Globorotalia tosaensis |
Globorotalia tumida |
Neogloboquadrina "dupac" |
Neogloboquadrina acostaensis |
Neogloboquadrina humerosa |
Neogloboquadrina pachyderma (sinistral) |
Neogloboquadrina pachyderma (dextral) |
Neogloboquadrina sp. |
Orbulina universa |
Pulleniatina obliquiloculata |
Sphaeroidinellopsis subdehiscens |
Turborotalita quinqueloba |
Other |
Total planktics |
Benthics |
13H-3-71 |
113.61 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
3 |
8 |
0 |
0 |
0 |
0 |
1 |
1 |
11 |
2 |
1 |
0 |
7 |
0 |
0 |
0 |
0 |
1 |
1 |
65 |
0 |
1 |
106 |
20 |
13H-3-81 |
113.71 |
4 |
2 |
0 |
0 |
6 |
2 |
11 |
1 |
28 |
0 |
12 |
43 |
25 |
1 |
3 |
15 |
0 |
2 |
2 |
19 |
9 |
17 |
0 |
21 |
2 |
1 |
0 |
0 |
1 |
11 |
47 |
0 |
8 |
293 |
29 |
13H-3-91 |
113.81 |
7 |
0 |
11 |
1 |
0 |
2 |
0 |
0 |
11 |
0 |
14 |
26 |
21 |
0 |
0 |
12 |
0 |
0 |
2 |
20 |
4 |
2 |
0 |
15 |
0 |
0 |
0 |
1 |
2 |
6 |
180 |
0 |
3 |
340 |
95 |
13H-3-121 |
114.11 |
2 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
4 |
3 |
12 |
0 |
0 |
1 |
0 |
0 |
0 |
10 |
1 |
1 |
0 |
7 |
0 |
0 |
0 |
2 |
1 |
2 |
9 |
0 |
1 |
58 |
24 |
13H-3-141 |
114.31 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
3 |
0 |
2 |
13 |
22 |
0 |
0 |
1 |
0 |
0 |
0 |
10 |
1 |
1 |
0 |
12 |
0 |
0 |
1 |
0 |
2 |
8 |
69 |
0 |
8 |
157 |
46 |
13H-4-26 |
114.66 |
3 |
0 |
0 |
0 |
1 |
2 |
2 |
0 |
0 |
0 |
7 |
9 |
15 |
1 |
0 |
0 |
0 |
0 |
0 |
4 |
4 |
2 |
0 |
10 |
0 |
0 |
0 |
0 |
1 |
4 |
64 |
0 |
5 |
134 |
27 |
13H-4-41 |
114.81 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
0 |
2 |
2 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
7 |
0 |
0 |
0 |
8 |
0 |
0 |
0 |
0 |
0 |
8 |
18 |
0 |
4 |
58 |
41 |
13H-4-92 |
115.32 |
0 |
0 |
0 |
0 |
2 |
0 |
1 |
0 |
6 |
0 |
6 |
9 |
4 |
0 |
0 |
1 |
0 |
0 |
0 |
8 |
1 |
3 |
2 |
7 |
0 |
1 |
2 |
3 |
0 |
4 |
180 |
0 |
7 |
247 |
75 |
13H-6-101 |
118.41 |
0 |
0 |
0 |
0 |
2 |
2 |
9 |
4 |
23 |
0 |
4 |
53 |
24 |
0 |
0 |
6 |
0 |
4 |
1 |
30 |
2 |
3 |
1 |
60 |
24 |
0 |
0 |
5 |
7 |
6 |
22 |
2 |
17 |
311 |
42 |
13H-6-121 |
118.61 |
0 |
1 |
0 |
0 |
7 |
0 |
10 |
0 |
27 |
0 |
13 |
63 |
33 |
0 |
0 |
3 |
0 |
1 |
0 |
19 |
0 |
6 |
0 |
46 |
24 |
0 |
0 |
1 |
5 |
19 |
14 |
0 |
12 |
304 |
31 |
13H-6-131 |
118.71 |
1 |
3 |
0 |
0 |
4 |
0 |
9 |
1 |
63 |
1 |
18 |
48 |
23 |
0 |
0 |
2 |
0 |
0 |
0 |
26 |
5 |
1 |
0 |
53 |
24 |
0 |
0 |
0 |
2 |
27 |
5 |
2 |
6 |
324 |
12 |
13H-6-141 |
118.81 |
1 |
6 |
0 |
0 |
5 |
2 |
6 |
4 |
67 |
0 |
17 |
48 |
32 |
0 |
0 |
3 |
1 |
1 |
0 |
9 |
6 |
2 |
0 |
58 |
12 |
1 |
0 |
4 |
4 |
20 |
8 |
3 |
12 |
332 |
5 |
13H-7-9 |
118.99 |
0 |
7 |
0 |
2 |
0 |
0 |
16 |
3 |
52 |
0 |
20 |
62 |
31 |
0 |
0 |
3 |
1 |
0 |
0 |
15 |
1 |
1 |
0 |
48 |
15 |
0 |
0 |
0 |
9 |
8 |
2 |
1 |
13 |
310 |
4 |
13H-CC-11 |
119.21 |
0 |
7 |
0 |
0 |
2 |
7 |
6 |
4 |
17 |
0 |
15 |
46 |
39 |
0 |
0 |
1 |
2 |
0 |
0 |
21 |
2 |
0 |
0 |
87 |
40 |
1 |
0 |
7 |
7 |
3 |
11 |
0 |
6 |
331 |
2 |
14H-1-121 |
120.61 |
0 |
4 |
1 |
1 |
2 |
3 |
17 |
1 |
69 |
0 |
9 |
55 |
15 |
0 |
0 |
0 |
0 |
0 |
0 |
15 |
0 |
3 |
0 |
47 |
37 |
0 |
1 |
9 |
7 |
14 |
7 |
0 |
10 |
327 |
9 |
14H-1-131 |
120.71 |
0 |
4 |
0 |
0 |
6 |
2 |
16 |
1 |
64 |
1 |
17 |
50 |
29 |
0 |
0 |
2 |
0 |
1 |
0 |
15 |
0 |
0 |
0 |
35 |
19 |
0 |
0 |
3 |
8 |
30 |
2 |
0 |
10 |
315 |
6 |
14H-1-141 |
120.81 |
0 |
5 |
0 |
0 |
5 |
1 |
24 |
1 |
60 |
0 |
22 |
54 |
30 |
0 |
0 |
3 |
0 |
1 |
0 |
21 |
0 |
0 |
0 |
31 |
23 |
0 |
1 |
3 |
4 |
12 |
5 |
0 |
9 |
315 |
8 |
14H-2-11 |
121.01 |
2 |
4 |
2 |
0 |
11 |
2 |
19 |
13 |
31 |
0 |
26 |
26 |
29 |
0 |
0 |
5 |
0 |
0 |
0 |
17 |
1 |
0 |
1 |
72 |
30 |
0 |
0 |
0 |
12 |
0 |
14 |
0 |
3 |
320 |
6 |
14H-2-121 |
122.11 |
1 |
5 |
2 |
2 |
2 |
0 |
9 |
1 |
29 |
0 |
18 |
53 |
32 |
0 |
0 |
4 |
0 |
0 |
0 |
26 |
2 |
2 |
0 |
68 |
7 |
1 |
0 |
0 |
8 |
2 |
36 |
0 |
9 |
319 |
35 |
14H-4-11 |
124.01 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
2 |
0 |
8 |
0 |
0 |
16 |
20 |
14H-4-19 |
124.09 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
3 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
13 |
0 |
0 |
1 |
54 |
0 |
2 |
2 |
0 |
4 |
0 |
180 |
0 |
3 |
266 |
163 |
14H-4-31 |
124.21 |
3 |
1 |
0 |
0 |
2 |
0 |
6 |
0 |
3 |
0 |
3 |
24 |
16 |
0 |
0 |
6 |
0 |
1 |
0 |
22 |
0 |
0 |
0 |
107 |
2 |
2 |
1 |
0 |
6 |
4 |
60 |
0 |
6 |
275 |
27 |
14H-4-41 |
124.31 |
1 |
2 |
1 |
0 |
3 |
0 |
8 |
4 |
1 |
1 |
3 |
41 |
42 |
0 |
0 |
1 |
0 |
0 |
0 |
25 |
0 |
0 |
2 |
80 |
4 |
1 |
1 |
4 |
11 |
3 |
78 |
0 |
4 |
321 |
15 |
18H-4-96 |
162.86 |
20 |
0 |
0 |
0 |
11 |
0 |
18 |
1 |
0 |
0 |
8 |
1 |
37 |
0 |
0 |
2 |
0 |
5 |
0 |
12 |
0 |
0 |
0 |
28 |
1 |
1 |
2 |
0 |
27 |
0 |
69 |
0 |
79 |
322 |
28 |
18H-4-101 |
162.91 |
14 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
5 |
0 |
0 |
14 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
35 |
0 |
22 |
0 |
4 |
105 |
9 |
18H-4-121 |
163.11 |
16 |
0 |
0 |
0 |
4 |
0 |
13 |
0 |
1 |
4 |
1 |
0 |
53 |
0 |
0 |
2 |
0 |
0 |
0 |
12 |
0 |
0 |
3 |
21 |
0 |
0 |
1 |
0 |
23 |
0 |
38 |
1 |
81 |
274 |
16 |