Home

Article Search

Ben Hillesheim

1106 toc

 

 

 

 

     Wandering through a museum gallery can be a powerful experience. Walking under towering sauropod dinosaurs and peering through glass display cases at miniscule but immaculately detailed fossil fishes, one cannot help but catch glimpses of the prehistoric past. Exploring a museum collections room can be a similar experience. Drawers upon drawers of fossil material line aisles upon aisles of cabinets, all meticulously sorted and labelled. It is easy to think that the whole story of life on this planet resides within that building. While it is tempting to think that plants, animals, and fossils housed in a museum collection or on display represent a perfect sampling of “everything there” and present a one-to-one picture of what that time and place were really like, this is rarely the case. There are many reasons the fossil record is not a complete picture of ancient life, from animals not fossilizing to fossils being destroyed long before the first humans walked the Earth. It is perhaps then most frustrating when it is our own unconscious biases and foibles that distort our view of prehistory. A recent study in Palaeontologia Electronica uses the Cambrian Spence Shale Lagerstätte as a case study to dig into human-derived biases and how big of an impact they have on the way we study prehistoric life.

Ben Hillesheim

995 toc

 

 

 

     Caves are time capsules to the recent past. Tucked away beneath the surface of the Earth, fossils found in caves are not exposed to the same weathering and erosional forces as surface fossils. A surprisingly rich fossil deposit in Cueva de los Nesofontes in northwest Cuba sheds a good deal of light on the Holocene of Cuba – a poorly understood period of the island’s faunal history. A recent study published in Palaeontologia Electronica explores this deposit using stratigraphy, stable isotope analysis, and radiocarbon dating to shed light on this poorly understood time and place. In doing so, the researchers uncover a world that is younger and richer than they had previously imagined.

Kerste Milik

1135 tocWithout a skeleton or a hard shell, an animal’s chances of becoming a fossil are very slim. But under the right conditions, even soft-bodied animals like insects and spiders can be fossilized. A recent paper in Palaeontologia Electronica describes several Eocene spider fossils that were remarkably well preserved, including two new species.

1041 tocKerste Milik

 

  

 

figure3Spinosaur teeth used in the study. Like all reptiles, dinosaurs constantly replaced their teeth.

A recent study published in Palaeontologia Electronica finds spinosaurid dinosaurs regrew their teeth unusually frequently, giving new insight into the dinosaurs’ dietary habits and explaining some puzzling phenomena in the fossil record.

Spinosaurs, the family of dinosaurs including the famous Spinosaurus, were remarkable creatures, from their enormous size to their crocodile-like skulls to the iconic sail on their backs. Like all reptiles, these dinosaurs had constant tooth replacement. This means that like humans, dinosaurs lost their teeth and they got replaced with new ones. However, instead of losing only one set of “baby teeth,” the dinosaurs continued losing and replacing teeth constantly throughout their lives, just like sharks and many other living creatures.

1087 tocKerste Milik

 

 

In a museum filled with towering dinosaurs, six small trilobites tell a big story. Paleontologists Russell Bicknell and Brayden Holland from University of New England, NSW documented evidence of injuries on trilobite fossils at the Royal Tyrrell Museum of Paleontology in Alberta, Canada, providing clues about predator-prey relationships in the Cambrian Period.

Trilobites were one of the oldest groups of arthropods—animals with exoskeletons and joint-legs, that includes insects and crustaceans. “A trilobite kind of looks like a slater (an isopod),” said Dr. Bicknell, “but has an exoskeleton that is made out of calcium carbonate, literal rock! And often they have a lot more spines than modern day isopods.”

1071 toc

Ben Hillesheim

 

 

Modern paleontology is exciting stuff. Once upon a time paleontology largely consisted of a team of dusty professors and college students baking in the summer heat as they carefully (and sometimes not so carefully) pried fossil bones, shells, and traces from their rocky tombs. It was grueling and unforgiving work. Still in its infancy, 19th and early 20th Century paleontology concerned itself with broad questions, e.g. “What is this animal?”, “What is it related to?”, “When did it live?”, “How big was it?” While some paleontology is still conducted this way (it certainly is in popular media), modern tools now allow paleontologists and other researchers to ask and answer questions they never dreamed would be possible only a few short decades ago. 

1045 tocKerste Milik

 

 

 In a July 2020 study in Palaeontologia Electronica, paleontologist Adiël A. Klompmaker and colleagues identified several Mesozoic crab specimens from sponge and coral-associated limestones in Europe. The researchers described six new taxa, reassigned several others, and documented some spectacular finds. 

951 toc

Kerste Milik

 

 figure2An example of how anatomy of the skull and teeth give clues about marine mammals’ feeding behavior.

Fossils not only show us what ancient animals looked like, but also provide clues about how they lived. This is especially true for fossilized jaws and teeth, which tell a remarkable story of both what a species ate and how it ate. In a recent paper published in Palaeontologia Electronica, Dr. Annalisa Berta and Dr. Agnese Lanzetti used fossil data to track how marine mammals’ feeding strategies evolved over their 50-million-year history, providing a useful reference for studying drivers of diversity in the past, present, and future.

Tube Microstructure May Help Identify Eocene Marine Worms1098 toc

Ben Hillesheim

 

Identifying organisms to genus or species level in the fossil record can be difficult. Often the characters that biologists use to identify modern species are absent or obscured in their fossil relatives. Think of how much more difficult a lion is to tell apart from a tiger without the luxury of flesh and fur to identify them, and you begin to get the idea (Christiansen 2008). Fossil animals rarely possess soft tissues and even more rarely possess exterior patterning (as in the lion/tiger example). We know, however, that there is a very big difference between a lion and tiger and that the same is likely true for fossil animals, in that they may appear superficially similar but should they be once again dressed in their soft parts, their identities as different species may become readily apparent. Because of this conundrum, any trait that can be easily and consistently identified in the fossil record and can help distinguish between fossil species is incredibly valuable.

1047 tocKerste Milik

Imagine you’re a snail living on the ocean floor…during an Ice Age. The sea temperature is drastically rising and falling as the Earth enters phases of glaciation and warming. The sea level is changing too, making your habitat deeper or shallower and often changing its structure entirely. How do species fare in this ever-changing world? And is their fate linked to their environment?

logo smallPalaeontologia Electronica
Webmaster
1998–2021
24 years of electronic palaeontology

PE is archived by CLOCKSS and LOCKSS programs.