Table 1. Sample data table to illustrate how a spreadsheet should be set up for ADAPTS.
TAXON I.D. | FIRST APPEARANCE DATUM |
LAST APPEARANCE DATUM |
RANGE | ANCESTOR |
1 | 575 | 564.1 | 10.9 | 0 |
2 | 574.4 | 555.7 | 18.7 | 1 |
3 | 565 | 542.9 | 22.1 | 1 |
4 | 564.6 | 563.8 | 0.8 | 2 |
5 | 564.1 | 563.7 | 0.4 | 1 |
6 | 562.3 | 552.7 | 9.6 | 2 |
7 | 560.2 | 551.9 | 8.3 | 2 |
8 | 558.4 | 552.6 | 5.8 | 2 |
9 | 557.4 | 556.5 | 0.9 | 7 |
10 | 555.2 | 554.9 | 0.3 | 8 |
Table 2. A hypothetical life table, showing constant probability of extinction, after Raup (1975).
Age class (x) |
No. of extinctions in interval (dx) |
Survivors at start of interval (lx) |
Mortality rate (qx) |
0 | 4000 | 10000 | 0.4 |
1 | 2400 | 6000 | 0.4 |
2 | 1440 | 3600 | 0.4 |
3 | 860 | 2160 | 0.4 |
4 | 526 | 1300 | 0.4 |
5 | 312 | 774 | 0.4 |
6 | 186 | 462 | 0.4 |
7 | 114 | 276 | 0.4 |
8 | 66 | 162 | 0.4 |
9 | 42 | 96 | 0.4 |
>=10 | 54 | 54 | _ _ |
Table 3. Table showing the results of Epstein's Test for the three survivorship curves for the random tree.
ST | n | SUM (r-1) lives | UPPER LIMIT | LOWER LIMIT | LINEAR? |
DYNAMIC | 986 | 4787477.2 | 4940824.06 | 4596930.34 | Y |
CSS | 986 | 4805056.27 | 4934671.26 | 4591206.38 | Y |
EISS | 986 | 452943.89 | 475359.31 | 442273.17 | Y |
Table 4. Results of the A-D tests for the TREE GROWTH data. For the extinction tests, the "A" and "D" columns refer to the numbers of ancestors that outlive their descendants and vice versa. For the speciation tests the "A" and "D" columns tally the number of ancestors, in the previous branching event that gave rise to the next taxon, and vice versa.
ST | n | "A" | "D" | CHI SQUARED (df=1) | ACCEPT NULL HYPOTHESIS? |
EXTINCTION | 986 | 506 | 473 | 1.11 | Y (p>0.1) |
SURVIVORSHIP "CONTROL" | 986 | 473 | 507 | 1.18 | Y (p>0.1) |
SPECIATION | 986 | 489 | 495 | 0.04 | Y (p>0.1) |
SPECIATION (RESTRICTED) | 986 | 334 | 328 | 0.05 | Y (p>0.1) |