The modified application of Perron's theorem to evolutionary and palaeoecological studies of invertebrates in palaeobiology
Plain Language Abstract
This study applies uniquely to size-shape analyses of fossils. In this note we are concerned with microfossils (Ostracoda, Foraminifera) partly because of the relative ease with which adequate material can be obtained from boreholes over a registered time-interval. It is shown that the interpretation of the first (and largest) latent vector of a Perron matrix cannot be simply identified as a size factor and that it also encompasses a shape-element unless all the components of the first latent vector happen to be ones.
Resumen en Español
Una aplicación modificada del teorema de Perron a los estudios evolutivos y paleoecológicos de invertebrados en paleobiología
El teorema de Perron establece que entre las raíces y vectores latentes de una matriz real simétrica positiva A habrá un valor real positivo, a saber la raíz máxima, que tiene un vector latente positivo (es decir, que todos los componentes del mismo son positivos, x > 0) y que no es superado por ninguna otra raíz latente de la matriz. En un análisis tamaño-forma-tiempo de una especie de invertebrados fósil hay un elemento tensorial implicado que opera con tasas diferentes en direcciones diferentes y con ubicaciones típicas en un tejido. Cuando no está compuesto por un vector de unos, el primer vector latente incluye una expresión de variación de la forma. Cargas desiguales representan tasas diferentes de extensión en relación al tamaño general. Por tanto, para un vector con componentes positivos desiguales, cuanto mayor sea el aumento de tamaño, más divergirán las proporciones entre los elementos. Para ejemplificar esta aplicación del teorema de Perron se han utilizado datos de foraminíferos y ostrácodos.
Palabras clave: teorema de Perron, invertebrados, variación de la forma, paleobiología
Traducción: Miguel Company
Résumé en Français
Application modifiée du théorème de Perron aux études évolutives et paléoécologiques en paléobiologie des invertébrés.
Le théorème de Perron établi que parmi les racines latentes et les vecteurs de la valeur propre d'une matrice symétrique positive A, il y aura une valeur propre positive, à savoir la racine maximum, qui a un vecteur latent positif (i.e., dont tous les éléments sont positifs, x > 0) et qui n'est surpassé par aucune racine latente de la matrice. Dans les études des espèces d'invertébrés fossiles prenant en compte la taille, la forme et le temps, il y a un élément tensoriel impliqué qui opère de différentes manières, dans différentes directions et à des positions types dans un tissu. Si jamais il n'est pas composé d'un vecteur des uns, le premier vecteur latent inclus une expression de la variabilité de forme. Les charges inégales représentent des taux d'extension différents en relation avec la taille générale. Donc, pour un vecteur avec des composantes inégales signées positivement, plus la taille augmente, plus la proportion entre les éléments diverge. Des données sur les foraminifères et les ostracodes fossiles sont utilisées pour illustrer l'importance du théorème de Perron.
Mots clés: théorème de Perron, invertébrés, variation de forme, paléobiologie
Translator: Olivier Maridet
Deutsche Zusammenfassung
Die modifizierte Anwendung von Perron's Lehrsatz auf evolutionäre und paläontologische Studien zu Invertebraten in der Paläobiologie
Perron's Lehrsatz besagt, dass unter den latenten Wurzeln und Vektoren einer sicheren positiven symmetrischen Matrix A ein sicherer positiver Wert sein wird, das heißt die maximale Wurzel, die einen positiven latenten Vektor hat (d.h. alle Komponenten ..., x > 0) und die von keiner anderen latenten Wurzel in der Matrix übertroffen wird. In einer Größen-Form-Zeit Studie über eine fossile Invertebraten ist ein tensoriales Element involviert das mit unterschiedlichen Geschwindigkeiten in unterschiedlichen Richtungen und bei typischen Orten in einem Gewebe funktioniert. Immer dann wenn mehrere Vektoren beteiligt, sind sagt der erste latente Vektor etwas zur Gestalts-Änderung aus. Unterschiedliche Aufteilung von Vektoren bedeutet verschiedene Extensionsraten im Verhältnis zur generellen Größe. Daher wird bei einem Vektor mit ungleich positiv signierten Komponenten Folgendes geschehen: je höher die Größenzunahme, desto mehr werden die Proportionen zwischen des Elementen divergieren. Es werden Daten von fossilen Foraminiferen und Ostrakoden verwendet, um die Bedeutung von Perron's Theorem zu veranschaulichen
Schlüsselwörter: Perron's Theorem, Invertebraten, Größenvariation, Paläobiologie,
verständliche Zusammenfasung
Translator: Eva Gebauer
Arabic
Translator: Ashraf M.T. Elewa