Home

Article Search

Chatham Island Paleocene fossils provide insight into the palaeobiology, evolution, and diversity of early penguins (Aves, Sphenisciformes)

Jacob C. Blokland, Catherine M. Reid, Trevor H. Worthy, Alan J.D. Tennyson, Julia A. Clarke, and R. Paul Scofield

Plain Language Abstract

Penguins (Sphenisciformes) are an ancient lineage of wing-propelled diving waterbirds with a fossil record that extends back to shortly after the mass extinction event at the end of the Cretaceous. At between 62.5 to 60 million years old, numerous skeletal remains recovered from Chatham Island, off the eastern coast of New Zealand, are some of the oldest penguin fossils known. Some of these fossils are representative of a new medium-sized penguin, which we formally describe here, and others are recognised to belong to a notably larger form. Tested in the context of other extinct penguins, as well as modern forms, these archaic Chatham Island penguins are revealed to be among some of the most primitive representatives in this group, consistent with their age. While possessing several structural features of the wing that are reminiscent of other early penguins, the newly described medium-sized penguin also has a more derived shortened lower hindlimb bone (tarsometatarsus) approaching the morphology of living counterparts. Considering the majority of earliest penguin fossils have been found in close proximity to the eastern coast of New Zealand’s South Island, these Chatham Island fossils further support the idea that this bird group originated near this region. Furthermore, the large morphological diversity observed in these most ancient forms also provides evidence that the evolutionary divergence between penguins and their closest living relatives, the tubenoses (albatrosses, petrels and allies), occurred during the Late Cretaceous.

Resumen en Español

Los fósiles del Paleoceno de la isla de Chatham proporcionan información sobre la paleobiología, la evolución y la diversidad de los pingüinos primitivos (Aves, Sphenisciformes)

Numerosos restos esqueléticos recuperados in situ del Paleoceno temprano a medio deTakatika Grit de la isla de Chatham, Nueva Zelanda, se encuentran entre los fósiles más antiguos atribuidos al clado de los pingüinos (Aves, Sphenisciformes). Representan un nuevo taxón de tamaño mediano, para el cual se describe un nuevo género y especie, y una segunda forma, notablemente más grande. Estos nuevos pingüinos son analizados en un marco bayesiano y de parsimonia y utilizando una matriz filogenética actualizada y revisada, basada en caracteres morfológicos y moleculares, y son interpretados como algunos de los Sphenisciformes más basales conocidos, estrechamente relacionados con Waimanu. Aunque comparten numerosas características con los primeros buceadores de propulsión alar, el nuevo taxón presenta la más antigua evidencia del característico tarsometatarso de los pingüinos. Estos antiguos representantes de la isla de Chatham se suman a un creciente número de ejemplares y a una mayor diversidad morfológica de pingüinos del Paleoceno en la región de Nueva Zelanda, lo que sugiere un origen para el grupo en esta región. Al ser considerados junto con otros pingüinos del Paleoceno, estos taxones revelan que los Sphenisciformes se diversificaron rápidamente como piscívoros no voladores en los océanos meridionales después de la extinción en masa del Cretácico final. También proporcionan pruebas adicionales para la hipótesis que plantea que su origen es anterior al Paleoceno. Esto implica que los Sphenisciformes troncales y su grupo hermano, los Procellariiformes, se originaron en el Cretácico Superior y, por lo tanto, es de esperar que se encuentren en estratos del Cretácico Superior.

Palabras clave: nuevo género; nueva especie; paleontología; Nueva Zelanda; filogenia; aves acuáticas.

Traducción: Enrique Peñalver (Sociedad Española de Paleontología)

Résumé en Français

Des fossiles paléocènes des îles Chatham fournissent des données sur la paléobiologie, l’évolution, et la diversité des manchots anciens (Aves, Sphenisciformes)

De nombreux restes squelettiques découverts in situ dans des couches de l’unité de Takatika Grit dans les îles Chatham, Nouvelle Zélande, datant de la fin du Paléocène ancien au Paléocène moyen, sont parmi les plus anciens fossiles attribués au clade des manchots (Aves, Sphenisciformes). Ils représentent un nouveau taxon de taille moyenne, pour lequel nous érigeons une nouvelle espèce incluse dans un nouveau genre, et une seconde forme, considérablement plus grande. Ces nouveaux manchots sont analysés dans un cadre parcimonieux et bayésien en utilisant une matrice phylogénétique mise à jour et révisée, basée sur des caractères morphologiques et moléculaires, et ils sont interprétés comme étant parmi les plus basaux des sphénisciformes connus, proches parents de Waimanu. Tout en partageant de nombreuses caractéristiques avec les plus anciens oiseaux qui plongent en se propulsant avec leurs ailes, le nouveau taxon représente la plus ancienne occurrence de fossile dont la morphologie de tarsométatarse est caractéristique des manchots. Ces anciens représentants des îles Chatham s’ajoutent à un nombre et une diversité morphologique croissants de manchots paléocènes dans la région de la Nouvelle Zélande, suggérant une origine du groupe dans cette région. Avec les autres manchots paléocènes, ces taxons révèlent que les sphénisciformes se sont rapidement diversifiés en tant que piscivores non volants dans les océans austraux à la suite de l’extinction de masse de la fin du Crétacé. Ils fournissent également des preuves supplémentaires en faveur de l’hypothèse selon laquelle leur origine serait antérieure au Paléocène. Cela implique que le groupe-tronc des Sphenisciformes et leur groupe-frère, les Procellariiformes, ont pris leur origine au Crétacé récent, et que leur présence y est donc attendue.

Mots-clés : nouveau genre ; nouvelle espèce ; paléontologie ; Nouvelle Zélande ; phylogénétique ; oiseaux aquatiques

Translator: Antoine Souron

Deutsche Zusammenfassung

Paläozäne Fossilien von den Chatham Inseln geben Einblick in die Paläobiologie, Evolution und Vielfalt der frühen Pinguine (Aves, Sphenisciformes)

Zahlreiche Skelettüberreste, die in situ im späten früh- mittlelpaläozänen Takatika Grit der Chatham Inseln (Neuseeland) gefunden wurden, gehören zu den ältesten bekannten Fossilien, der Pinguinklade (Aves, Sphenisciformes). Sie repräsentieren zum einen ein neues mittelgroßes Taxon, für das wir eine neue Gattung und Art aufstellen, und zum anderen eine zweite, wesentlich größere Form. Diese neuen Pinguine werden mit einem Parsimonie und Bayesian Framework analysiert und als eher basale Sphenisciforme interpretiert, eng verwandt mit Waimanu. Es wird eine aktualisierte und überarbeitete phylogenetische Matrix verwendet, die auf morphologischen und molekularen Merkmalen basiert. Obwohl das neue Taxon zahlreiche Merkmale mit den frühesten Unterwasserfliegern teilt, weist es das älteste Vorkommen der charakteristischen Tarsometatarsus-Morphologie der Pinguine auf. Diese frühen Vertreter von den Chatham Inseln tragen zu einer wachsenden Zahl und zunehmender morphologischer Vielfalt paläozäner Pinguine in der neuseeländischen Region bei, was auf einen Ursprung für die Gruppe dort hindeutet. Durch die Ergänzung zu anderen paläozänen Pinguinen zeigen diese Taxa, dass sich die Sphenisciformes nach dem Ende der Kreidezeit schnell als nicht-volante Fischfresser in den südlichen Ozeanen diversifizierten. Sie liefern auch weitere Beweise für die Hypothese, dass ihr Ursprung vor dem Paläozän liegt. Dies bedeutet, dass die Stamm-Sphenisciformes und ihre Schwestergruppe, die Procellariiformes, beide ihren Ursprung in der Spätkreide haben und es somit auch zu erwarten ist, dass sie dort auftreten.

Schlüsselwörter: neue Gattung; neue Art; Paläontologie; Neuseeland; Phylogenie; Wasservögel

Translator: Eva Gebauer

Arabic

Translator: Ashraf M.T. Elewa

Polski

Paleoceńskie skamieniałości na wyspie Chatham zapewniają wgląd w paleobiologię, ewolucję i różnorodność wczesnych pingwinów (Aves, Sphenisciformes)

Liczne szczątki szkieletowe odzyskane in situ od późnego wczesnego do środkowego paleocenu Takatika Grit z wyspy Chatham w Nowej Zelandii należą do najstarszych znanych skamieniałości przypisywanych do kladu pingwinów (Aves, Sphenisciformes). Reprezentują one nowy takson średniej wielkości, dla którego ustanawiamy nowy rodzaj i gatunek, a także drugą, znacznie większą formę. Te nowe pingwiny są analizowane przy pomocy reguły parsymonii i wnioskowania byesowskiego przy użyciu zaktualizowanej i poprawionej matrycy filogenetycznej, opartej na cechach morfologicznych i molekularnych i interpretowane są jako jedna z najbardziej plezjomorficznych form ze znanych Sphenisciformes, blisko spokrewnionych z Waimanu. Przy tak wielu cechach, jak u pierwszych pingwinów o lokomocji skrzydłowej przy pływaniu, nowy takson dokumentuje najstarsze występowanie charakterystycznej dla pingwinów morfologii tarsometatarsus. Ci wcześni przedstawiciele z wyspy Chatham powiększają liczbę i zwiększają różnorodność morfologiczną paleoceńskich pingwinów w regionie Nowej Zelandii, sugerując pochodzenie tamtejszej grupy. Po dodaniu do innych pingwinów paleoceńskich, taksony te ujawniają, że Sphenisciformes szybko się rozwijają jako nielotni rybożercy w oceanach południowych po masowym wymieraniu kredowym. Dostarczają również dalszych dowodów na hipotezę, że ich pochodzenie poprzedza paleocen. To implikuje, że pierwotne Sphenisciformes i ich siostrzana grupa, Procellariiformes, powstały, jak można się było spodziewać, w późnej kredzie.


Słowa kluczowe: nowy rodzaj; nowe gatunki; paleontologia; Nowa Zelandia; filogenetyka; ptaki wodne

 

Translator:  Krzysztof Stefaniak

FIGURE 1. Locality information. 1, Relative position of New Zealand and the Chatham archipelago; 2, The locality on the Chatham Islands where the fossils were found; 3, Stratigraphic column showing the Takatika Grit, from which the fossils were recovered. The stratigraphy is based on the same locality and stratigraphy illustrated in Hollis et al. (2017, figure 3) and also uses information from Consoli et al. (2009, figure 1). Ages, units, and sub-units refer to those specified in Hollis et al. (2017).

 figure1

 

 

 

FIGURE 2. Axis vertebra (1-6), cervical vertebrae (7-30), pelvis (31-34), caudal vertebrae (35-38), and rib elements (39, 40) referred to Kupoupou stilwelli n. gen. et sp. Axis, NMNZ S.47303 in 1, dorsal; 2, ventral, 3, right lateral; 4, left lateral; 5, cranial; 6, caudal. Cervical vertebra (i), possibly third in vertebral column, NMNZ S.47303 in 7, dorsal; 8, ventral; 9, right lateral; 10, left lateral; 11, cranial; 12, caudal. Cervical vertebra (ii), NMNZ S.47303 in 13, dorsal; 14, ventral; 15, right lateral; 16, left lateral; 17, cranial; 18, caudal. Cervical vertebra (iii), NMNZ S.47303 in 19, dorsal; 20, ventral; 21, right lateral; 22, left lateral; 23, cranial; 24, caudal. Cervical vertebra (iv), NMNZ S.47303 in 25, dorsal; 26, ventral; 27, right lateral; 28, left lateral; 29, cranial; 30, caudal. A partial ischium, from the right side of the pelvis, NMNZ S.47303, 31, dorsal; 32, ventral; 33, medial; 34, right lateral. Caudal vertebra, NMNZ S.47303, 35, cranial and 36, caudal. Caudal vertebra, NMNZ S.47312, interpreted to have been located further caudally in the vertebral column compared to the caudal vertebra in NMNZ S.47303, in 37, cranial and 38, caudal. A left rib, NMNZ S.47303 in 39, lateral and 40 caudal. Abbreviations: ac, ansa costotransversaria; fac, facies articularis caudalis; facr, facies articularis cranialis; fov, fovea at base of processus spinosus; ft, foramen transversarium; fv, foramen vertebrale; iav, incipient projections of the arcus vertebrae; li, lacuna interzygapophysialis; pc, processus costalis; pca, processus caroticus; ps, processus spinosus; pt, processus transversus; pvc, processus ventralis corporis; tc, tuberculum costae; td, torus dorsalis; zca, zygapophysis caudalis; zcr, zygapophysis cranialis. Scale bars equal to 20 mm.

figure2 

 

 

 

 

FIGURE 3. Coracoids and scapula referred to Kupoupou stilwelli n. gen. et sp. (1-2, 6-7, 8-9) compared to other Paleocene taxa (3-5). Two left coracoids assigned to K. stilwelli n. gen. et sp., NMNZ S.44729, in 1, ventral and 2, dorsal; and NMNZ S.47308 in 6, ventral and 7, dorsal. Dorsal perspectives of left coracoids of Muriwaimanu tuatahi, CM zfa 34 in 3, and Sequiwaimanu rosieae, CM 2016.6.1 in 4; right omal part coracoid of NMNZ S.47302 (larger Chatham Island form), in 5. Left cranial part scapula referred to K. stilwelli n. gen. et sp. NMNZ S.47339, 8, medial and 9, lateral. Abbreviations: acr, acromion; al, angulus lateralis; am, angulus medialis; ce, crista epimarginalis; coa, collum acrocoracoidei; cos, collum scapulae; cs, cotyla scapularis; csb, crista subcapitalis; fa, facies apicalis; fac, facies articularis clavicularis; fas, facies articularis sternalis; fg, facies glenoidalis (facies articularis humeralis); ic, impressio coracobrachialis; ilaa, insertion for ligamenti acrocoraco-acromiale; ilah, impressio ligamenti acrocoracohumeralis; ilap, insertion for ligamenti acrocoraco-procoracoidale; is, impressio sternocoracoidea; ipsc, tuberculum for the insertion of plica synovialis coracoidea; lacs, insertion for ligamenti acrocoraco-claviculare superficiale; lg, labrum glenoidale (facies articularis humeralis); li, labrum internum; not, notch adjacent to the facies articularis clavicularis; oca, protruding omal extremity of crista acrocoracoidea; pac, processus acrocoracoideus; pcc, processus procoracoideus; plsms, sulcus musculi supracoracoideus; tc, tuberculum coracoideum. Scale bars equal to 20 mm. Note that 5 is a tomographic rendering image. The images in 3.3 and 3.4 are reprinted from Mayr et al. (2018b, fig. 3B, 3A) by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com) and by permission of the Society of Vertebrate Paleontology (http://www.vertpaleo.org).

 figure3

 

 

 

FIGURE 4. The humeri of Kupoupou stilwelli n. gen. et sp. Left humerus of NMNZ S.47308 in 1, dorsal; 2, caudal; 3, ventral; 4, cranial; 5, distal; 6, proximal. Left humerus of NMNZ S.47339 in 7, dorsal; 8, caudal; 9, ventral; 10, cranial; 11, proximal. Abbreviations: cb, crista bicipitalis (bicipital crest); cd, condylus dorsalis (radial condyle); cdf, crus dorsale fossa; ch, caput humeri (humerus head); cv, condylus ventralis (ulnar condyle); dc, crista deltopectoralis (deltopectoral crest) and insertion of the musculus deltoideus major; dtr, dorsal trochlear ridge; el, insertion for entepicondylar ligament; fpd, fossa pneumotricipitalis dorsalis (secondary tricipital fossa); fpv, fossa pneumotricipitalis ventralis (tricipital fossa); ic, incisura capitis (capital incisura); iic, incisura intercondylaris; imp, impressio musculus pectoralis; itr, intermediate trochlear ridge; mb, fossa musculus brachialis; mcc, attachment scar of musculus coracobrachialis caudalis; mcd, margo caudalis; ms, trochlea for tendon musculi scapulotricipitalis; mcl, margo cranialis; mcr, insertion for musculus coracobrachialis cranialis (impressio coracobrachialis); mh, trochlea for tendon musculus humerotricipitalis; msc, crista musculi supracoracoidei as an accessory insertion site for the tendon of the musculus supracoracoideus, extending distally from the tuberculum dorsale; nf, nutrient foramen; psd, processus supracondylaris dorsalis (dorsal supracondylar tubercle); td, tuberculum dorsale (dorsal tubercle) the attachment site of the musculus deltoideus minor and the principal part of the musculus supracoracoideus; ts, sulcus transversus (transverse sulcus); tv, tuberculum ventrale (ventral tubercle/internal tuberosity); vtr, ventral trochlear ridge. Scale bars equal to 20 mm.

 figure4

 

 

 

FIGURE 5. Long bones of the forewing of Kupoupou stilwelli n. gen. et sp. Left ulna of NMNZ S.47308 in 1, dorsal; 2, ventral. Left ulna of NMNZ S.47339 in 3, dorsal; 4, ventral. Dorsal view of radii, 5, left NMNZ S.47312; 6, left NMNZ S.47303; 7, right NMNZ S.47303; 8, right NMNZ S.47339. Right radius of NMNZ S.47303 (without suggested eroded extent) in caudal (9), and ventral (10) views. Caudodistal view of left radius of NMNZ S.47303, 11, and Muriwaimanu tuatahi, right radius (mirrored) CM 2009.99.1, 12 . Abbreviations: bl, bony lobe; cd, condylus dorsalis; ch, cotyla humeralis; cv, cotyla ventralis; drp, incisura radialis (depression radialis proximalis); fr, fracture; fur, furrow; jut, edge-like jut on dorsal ulna face; mb, scar for insertion of musculus brachialis; mela, groove for musculus extensor longus alulae; memr, groove for the musculus extensor metacarpi radialis; ms, insertion scar for musculus supinator; nf, nutrient foramen; ol, olecranon; pcd, processus cotylaris dorsalis; tav, tuberculum aponeurosis ventralis; tc, tuberculum carpale; ud, depressio ligamentosa (ulnar depression). Dotted lines represent suggested erosion to respective elements. Scale bars equal to 20 mm. 11 and 12 are not to scale. 

 figure5

 

 

FIGURE 6. Images of the distal right-wing elements in NMNZ S.47303 (1-2, 4-17). Distal carpometacarpus in 1, ventral, 2, dorsal, and 4, distal aspects. Left carpometacarpi of Muriwaimanu tuatahi, 3 (CM zfa 34, mirrored, Slack et al., 2006), and Sequiwaimanu rosieae, 5 (CM 2016.6.1, mirrored, Mayr et al., 2018b) are presented for comparison, in ventral aspect. The right proximal manus phalanx of the second digit is shown in 6, dorsal, 7, ventral, 8, caudal, 9, cranial, 10, distal, and 11, proximal views. The right manus phalanx of the third digit is presented in 12, dorsal, 13, ventral, 14, caudal, 15, cranial, 16, distal, and 17, proximal aspects. A left-wing reconstruction of Kupoupou stilwelli n. gen. et. sp. is shown in 18, using mirrored carpometacarpus and phalanges. Scale bars are equal to 20 mm. Abbreviations: ee, eroded end; fad, facies articularis digitalis major; fam, facies articularis metacarpalis; fma, facies articularis digitalis major; fmi, facies articularis digitalis minor; mII, os metacarpale majus (metacarpal II); mIII, os metacarpale minus (metacarpal III); pc, pila cranialis phalangis; pp, proximally directed process; si, sulcus interosseous; sim, spatium intermetacarpale; smd, symphysis metacarpalis distalis.The images in 6.3 and 6.5 are reprinted from Mayr et al. (2018b, fig. 4G, 4F) by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com) and by permission of the Society of Vertebrate Paleontology (http://www.vertpaleo.org).

 figure6

 

 

 

FIGURE 7. Hindlimb elements. Right femur of Kupoupou stilwelli n. gen. et sp. NMNZ S.47308 in 1, cranial and 2, caudal views. Left distal femur of NMNZ S.47339 in 3, cranial and 4, caudal aspects. Right femur of Sequiwaimanu rosieae in caudal view (holotype, CM 2016.6.1), 5, for comparison. Fragmentary right distal tibiotarsus of NMNZ S.47339 in 6, caudal and 7, cranial aspects, compared to cranial view of right distal tibiotarsus of Waimanu manneringi (holotype, CM zfa 34), 8 . Abbreviations: ce, distal opening of canalis extensorius; cf, caput femoris; cl, condylus lateralis; cm, condylus medialis; cof, collum femoris; csm, crista supracondylaris medialis; ct, crista trochanteris; ctf, crista tibiofibularis; stf, semicondylus tibiofibularis; sf, semicondylus fibularis; epl, epicondylus lateralis; fac, facies articularis antitrochanterica; faf, facies articularis fibularis; fat, facies articularis tibialis; flc, fovea ligamenti capitis; fpo, fossa poplitea; ii, incisura intercondylaris; lcr, linea intermuscularis cranialis; lic, linea intermuscularis caudalis; sic, sulcus intercondylaris; sf, semicondylus fibularis; slf, sulcus fibularis; sp; sulcus patellaris; stf, semicondylus tibiofibularis; tct, trochlea cartilaginis tibialis; tlg, tuberculum musculus gastrocnemialis lateralis. Scale bars equal to 20 mm. The image in 7.5 is reprinted from Mayr et al. (2018b, fig. 11A) by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com) and by permission of the Society of Vertebrate Paleontology (http://www.vertpaleo.org). The image in 7.8 is reprinted from Mayr et al. (2017b, fig. 2j), which was published under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

 figure7

 

 

 

FIGURE 8. Tarsometatarsus of Kupoupou stilwelli n. gen. et sp. compared to other fossil taxa. Tarsometatarsi in dorsal aspect, 1, Paleocene Waimanu manneringi, right (mirrored), holotype CM zfa 35; 2, Paleocene Kupoupou stilwelli n. gen. et sp. left, NMNZ S.47312, 3, Eocene Delphinornis larseni, left, IB/P/B-0062. Left tarsometatarsus of NMNZ S.47312 in 4, distal, 5, proximal, 6, lateral, 7, plantar, and 8, medial views. Abbreviations: ait, area intercotylaris; cl, cotyla lateralis; cl(fdl), crista lateralis flexoris digitorum longus; cl(fhl), crista lateralis flexoris hallucis longus; clh, crista lateralis hypotarsi; cm, cotyla medialis; cm(fdl), crista medialis flexoris digitorum longus; eit, eminentia intercotylaris; fbl, sulcus for muscularis fibularis longus; fcdq, fovea ligamentae collateralis digitorum quarti; fdl, sulcus for tendon of musculus flexor digitorum longus; fhl, sulcus for tendon of musculus flexor hallucis longus; fid, fossa intercotylaris dorsalis; fidm, fossa intercotylaris dorsalis medialis; fphl, fossa parahypotarsalis lateralis; fphm, fossa parahypotarsalis medialis; fsp, fossa supratrochlearis plantaris; fvd, foramen vasculare distale; fvpl, foramen vasculare proximale laterale; fvpm, foramen vasculare proximale laterale; iim, incisura intertrochlearis medialis; ilcl, impressio ligamentosae collaterale laterale intertarsi; ilcm, impressio ligamentosae collaterale mediale intertarsi; ilcma, impressio ligamentosae collaterale mediale intertarsi accessorium; irel, impressiones retinaculi extensorii lateralis; irem, impressiones retinaculi extensorii medialis; madII, insertion site of musculus adductor digiti II; madIV, insertion site of musculus adductor digiti IV; sf, sulcus flexorius; sldl, sulcus longitudinalis dorsalis lateralis; sldm, sulcus longitudinalis dorsalis medialis; slg, sulcus ligamentosus; tII, trochlea metatarsi II; tIII, trochlea metatarsi III; tIV, trochlea metatarsi IV; tfb, tuberculum muscularis fibularis brevis; tmtc, tuberositas muscularis tibialis cranialis. Scale bars equal to 20 mm.

 figure8a

 

 

 

FIGURE 9. Views of the caudal end left mandible of NMNZ S.47302. 1, dorsal; 2 . ventral; 3, rostral; 4, caudal; 5, left lateral; 6, left medial aspects. Reconstruction assuming proportions similar to Paleocene penguins in 7, in left lateral view. Abbreviations: cc, cotyla caudalis; cl, cotyla lateralis; cm, cotyla medialis; facm, fossa aditus canalis mandibulae; fmc, fenestra mandibulae caudalis; mp, insertion of musculus pterygoideus; pc, processus coronoideus; plm, processes lateralis mandibulae; pmm, processus mandibulae medialis; pr, processus retroarticularis; si, sulcus intercotylaris. Scale bars equal to 20 mm.

 figure9

 

 

 

FIGURE 10. Cervical vertebra IV (1 - 6), coracoid (7 - 10), and furcula (11 - 16) of NMNZ S.47302, as part of the larger Chatham Island form. Cervical vertebra IV in 1, dorsal; 2, ventral; 3, right lateral; 4, left lateral; 5, cranial; 6; caudal. Omal right coracoid in 7, dorsal; 8, ventral; 9, medial; 10, lateral. Partial furcula in 11, caudal; 12, cranial; 13, right lateral; 14, left lateral; 15, dorsal; 16, ventral. Abbreviations: cs, cotyla scapularis; esc, extremitas sternalis claviculae; fac, facies articularis clavicularis; faca, facies articularis caudalis; facr, facies articularis cranialis; fg, facies glenoidalis (facies articularis humeralis); fo, fossa (see text); ft, foramen transversarium; ic, impressio coracobrachialis; ilaa, impressio ligamenti acrocoraco-acromiale; ilah, impressio ligamenti acrocoracohumeralis; ipsc, tuberculum for insertion of plica synovialis coracoidea; lg, labrum glenoidale (facies articularis humeralis); pc, processus costalis; pca, processus caroticus; pcc, processus procoracoideus; ps, processus spinosus; pvc, processus ventralis corporis; td, torus dorsalis; zca, zygapophysis caudalis; zcr, zygapophysis cranialis. Scale bars equal to 20 mm.

 figure10

 

 

 

FIGURE 11. Partial sternum of NMNZ S.47302, of the larger Chatham Island form. Dorsal, 1; ventral, 2; right lateral, 3; left lateral, 4; cranial, 5; caudal, 6 . Abbreviations: cs, carina sterni; fp, foramen pneumaticum; se, spina externa. Scale bar equals 20 mm.

 figure11

 

 

 

FIGURE 12. Humeri of sphenisciforms from the Chatham Island, compared to those of various early penguins. Right humerus NMNZ S.47304 of unnamed large form in 1, dorsal, 2, ventral. Humeri in ventral aspect, left Sequiwaimanu rosieae, CM 2016.6.1, 3; left Kupoupou stilwelli n. gen. et sp. NMNZ S.47308, 4; left K. stilwelli n. gen. et sp., NMNZ S.47339, 5; right Muriwaimanu tuatahi, CM zfa 34, 6; right M. tuatahi, 2008.145.4, 7; right M. tuatahi, 2008.145.3, 8; left M. tuatahi, 2008.145.4, 9; right M. tuatahi, CM 2010.108.3, 10; left Kaiika maxwelli, OU 22402, 11 . Abbreviations: cb, crista bicipitalis (bicipital crest); cd, condylus dorsalis (radial condyle); ch, caput humeri (humerus head); cv, condylus ventralis (ulnar condyle); dc, crista deltopectoralis (deltopectoral crest) and attachment site for musculus propatagialis (dorsally) and musculus pectoralis; fpd, fossa pneumotricipitalis dorsalis (secondary tricipital fossa); fpv, fossa pneumotricipitalis ventralis (tricipital fossa); ic, incisura capitis (capital incisura); imp, impressio musculus pectoralis, particularly for insertion of musculus pectoralis thoracica; itr, intermediate trochlear ridge; mcc, attachment scar of musculus coracobrachialis caudalis; ms, trochlea for tendon musculus scapulotricipitalis; mcr, insertion for musculus coracobrachialis cranialis; mh, trochlea for tendon musculus humerotricipitalis; msc, crista musculi supracoracoidei as an accessory insertion site for the tendon of the musculus supracoracoideus, extending distally from the tuberculum dorsale; psd, processus supracondylaris dorsalis (dorsal supracondylar tubercle); td, tuberculum dorsale (dorsal tubercle) and attachment site of musculus deltoideus minor and the principal part of the musculus supracoracoideus; ts, sulcus transversus (transverse sulcus); tv, tuberculum ventrale (ventral tubercle/internal tuberosity); vtr, ventral trochlear ridge. Scale bar equal to 20 mm. The image in 12.3 is reprinted from Mayr et al. (2018b, fig. 4C) by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com) and by permission of the Society of Vertebrate Paleontology (http://www.vertpaleo.org).

 figure12

 

 

 

FIGURE 13. Parsimony majority-rule (50%) consensus tree of 16,300 MPTs (length = 5,234). Percentage of MPTs recovering each node is indicated at each internode in the consensus tree, and bootstrap support values (over 40% only) are numbered below them italicised in red. Legend and branch colouration correspond to percentage of MPTs that recovered each node. Darkened area indicates the topological region occupied by Paleocene taxa. Ages associated with taxa are shown in thickened black lines, the references of which are given in Appendix 1. Nodes illustrated are not calibrated in association with age.

 figure13

 

 

 

 

FIGURE 14. Phylogenetic tree based on Bayesian inference (majority-rule consensus, undated). Colour of branches indicate the gradient of posterior probability values (see legend), the numbers of which are specified next to their respective branches. Darkened area at base of Sphenisciformes indicates the topological region occupied by Paleocene taxa. Scale bar corresponds to the given degree of change across branch lengths.

 figure14

 

 

 

 

FIGURE 15. A south polar orthographic projection of the Earth around 60 Ma. Approximate site locations of Paleocene penguin fossils are indicated. Locations are associated with following fossils: CANTERBURY, Waipara Greensand = Waimanu manneringi, Muriwaimanu tuatahi (Slack et al., 2006), Sequiwaimanu rosieae (Mayr et al., 2018b), giant Waipara Greensand penguin (Mayr et al., 2017a), ?Crossvallia waiparensis (Mayr et al., 2019); OTAGO, Moeraki Formation = Kumimanu biceae (Mayr et al., 2017b); CHATHAM ISLAND, Takatika Grit = Kupoupou stilwelli n. gen. et sp. and larger Chatham Island form; SEYMOUR ISLAND, Cross Valley Formation = Crossvallia unienwillia (Tambussi et al., 2005; Jadwiszczak et al., 2013). Adapted from palaeogeographic maps of the PALEOMAP PaleoAtlas for GPlates (Scotese, 2002; 2016), used with permission. Reconstruction was implemented using GPlates 2.0 software .

figure15

TABLE 1. Measurements of skeletal elements of referred specimens of Kupoupou stilwelli n. gen. et sp. Refer to Figure 2 and Figure A2 for relating numerals associated with each cervical vertebra to images of their corresponding element.

Specimen/Element Measurement distance Measurement
(mm)
NMNZ S.44729/Coracoid Maximum omal-sternal length 91.4
  Maximum omal-sternal distance of sulcus musculi supracoracoidei 12.1
  Maximum diameter of scapular condyle 7.7
NMNZ S.47303/Carpometacarpus Total length 31.9
  Distal craniocaudal width 11.73
  Distal dorsoventral depth 4.16
NMNZ S.47303/Left radius Total proximodistal length 69.16
  Proximal craniocaudal width 7.33
  Mid-shaft craniocaudal width 6.38
  Proximal dorsoventral depth 4.61
  Mid-shaft dorsoventral depth 3.35
  Distance from cotylaris humeralis to bend on cranial margin 24.82
NMNZ S.47303/Right radius (broken) Total proximodistal length (broken) 41.91
  Proximal craniocaudal width 7.06
  Mid-shaft craniocaudal width 7.58
  Proximal dorsoventral depth 5.75
  Mid-shaft dorsoventral depth 3.3
  Distance from cotylaris humeralis to bend on cranial margin 17.5
NMNZ S.47303/Manus phalanx II-1 Total length 24.14
  Proximal craniocaudal width 6.54
  Proximal dorsoventral depth 3.66
  Distal craniocaudal width 5.05
  Distal dorsoventral depth 1.85
  Maximum craniocaudal width 8.51
NMNZ S.47303/Manus phalanx III-1 Total length 13.17
  Proximal facet craniocaudal width 4.3
  Proximal facet dorsoventral depth 3.75
  Mid-shaft craniocaudal width 4.65
NMNZ S.47303/Axis Craniocaudal length of neural canal 12.28
  Lateral diameter of neural canal 5.5
  Total distance between tips of ventral process and neural spine 25.9
NMNZ S.47303/Cervical (i) Craniocaudal length of neural canal 13.9
  Lateral diameter of neural canal 7.14
  Total distance between tips of ventral process and neural spine 23.42
NMNZ S.47303/Cervical (ii) Craniocaudal length of neural canal 19.07
  Maximum lateral width between caudal zygapophyses 17.99
  Maximum lateral width between cranial zygapophyses 14.1
NMNZ S.47303/Cervical (iii) Craniocaudal length of neural canal 17.45
  Lateral diameter of neural canal 7.27
  Maximum lateral width between cranial zygapophyses 18.15
NMNZ S.47303/Cervical (iv) Craniocaudal length of neural canal 16.8
  Lateral diameter of neural canal 7.95
  Maximum lateral width between cranial zygapophyses 24.47
  Maximum lateral width between caudal zygapophyses 24
NMNZ S.47303/Caudal vertebra Lateral diameter of centrum/corpus 7.34
  Maximum lateral width 13.89
  Maximum dorsoventral height 15.57
  Maximum craniocaudal length of centrum/corpus 7.45
NMNZ S.47303/Rib Maximum length 70.42
NMNZ S.47303/Ischium Maximum craniocaudal length 41.42
  Maximum dorsoventral width 14.99
  Maximum mediolateral depth 2.36
NMNZ S.47308/Femur Maximum proximodistal length c. 96.0
  Maximum mediolateral width of distal end 25.7
  Maximum mediolateral width of proximal end 26.7
NMNZ S.47308/Humerus Maximum proximodistal length 106.8
  Mid-shaft craniocaudal width 13.3
  Maximum craniocaudal width of caput humeri 20.6
NMNZ S.47308/Coracoid Maximum omal-sternal length -
NMNZ S.47308/Ulna Maximum proximodistal length 69.9
  Proximal craniocaudal width 22.6
  Proximal dorsoventral depth 11.0
  Mid-shaft craniocaudal width 10.5
  Mid-shaft dorsoventral depth 6.5
  Distal craniocaudal width 10.0
NMNZ S.47339/Scapula Distance from facies articularis humeralis to acromion 22.0
NMNZ S.47339/Humerus Maximum proximodistal length -
  Mid-shaft craniocaudal width 14.4
  Maximum craniocaudal width of caput humeri 18.6
NMNZ S.47339/Ulna Maximum proximodistal length -
  Proximal craniocaudal width 22.1
  Proximal dorsoventral depth 11.3
  Mid-shaft craniocaudal width 11.0
  Mid-shaft dorsoventral depth 6.8
NMNZ S.47339/Radius Total proximodistal length 77.3
  Proximal craniocaudal width 8.5
  Mid-shaft craniocaudal width 8.2
  Proximal dorsoventral depth 7.1
  Mid-shaft dorsoventral depth -
  Distance from cotylaris humeralis to bend on cranial margin 16.3

 

 

TABLE 2. Measurements of skeletal elements of specimens associated with the larger Chatham Island form.

Specimen/Element Measurement distance Measurement
(mm)
NMNZ S.47302/Mandible Maximum rostrocaudal length 45.65
  Maximum mediolateral width 13.23
  Maximum dorsoventral depth 24.94
NMNZ S.47302/Furcula Maximum length of left clavicle from omal end to extremitas sternalis claviculae 46.99
  Distance between omal-most ends of each clavicle 59.85
  Maximum omal-caudal width 5.45
  Maximum dorsoventral depth 11.32
NMNZ S.47302/Cervical vertebra IV Length of neural canal 19.28
  Lateral diameter of neural canal 6.09
  Maximum lateral width between cranial zygapophyses 25.73
  Maximum lateral width between caudal zygapophyses 26
  Total distance between tips of ventral process and neural spine 24.09
NMNZ S.47302/Coracoid Diameter of scapular condyle 8.45
  Maximum omal-sternal length 62.02
  Maximum omal-sternal distance of sulcus musculi supracoracoidei 29.25
NMNZ S.47302/Sternum Maximum length 24.48
  Maximum width 22.23
  Maximum depth of carina sterni 6.09
NMNZ S.47304/Humerus Maximum proximodistal length 116.3
  Mid-shaft craniocaudal width 20.0
  Maximum craniocaudal width of caput humeri 27.0

FIGURE A1. NMNZ S.47302, 1, the extent of the specimen that has been physically prepared, 2, the three-dimensionally rendered elements within the block. Fossils numbered in 2 are as follows: 1, coracoid; 2, unidentified, possibly a radiale; 3, sternum; 4, furcula; 5, mandible; 6, cervical vertebra; 7, unidentified; 8, unidentified; 9, cervical vertebra IV; 10, unidentified. Scale bar is equal to 50 mm.

figure a1 

 

 

 

FIGURE A2. NMNZ S.47303, 1, the extent of the specimen that has been physically prepared, 2, the three-dimensionally rendered elements within the block. Fossils numbered in 2 are as follows: 1, ischium; 2, manus phalanx III-1; 3, radius; 4, radius; 5, cervical vertebra, Table 1 cervical (iv), Figure 2.25-30; 6, cervical vertebra, Table 1 cervical (iii), Figure 2.19-24; 7, carpometacarpus; 8, cervical vertebra, Table 1 cervical (ii), Figure 2.13-18; 9, possibly cervical vertebra III, Table 1 cervical (i), Figure 2.7-12; 10, manus phalanx II-1; 11, rib; 12, caudal vertebra; 13, axis. Scale bar is equal to 50 mm.

figure a2 

 

 

 

FIGURE A3. NMNZ S.47303 in Materialise Mimics, cross-sectional view of right radius (Figure 5.7, 5.9-10) in top two images, 1, and left radius (Figure 5.6-11) in two lower images, 2. Cross-sectional perspective reveals a reduced marrow-cavity compared to modern aerially flighted birds, but not as dense as extant penguins.

figure a3 

 

 

 

FIGURE A4. How specimens associated with Kupoupou stilwelli n. gen. et sp. are linked together through overlapping elements.

 figure a4

 

 

 

FIGURE A5. Undescribed vertebrae and ribs referred to Kupoupou stilwelli n. gen. et sp. 1-7, vertebrae, NMNZ S.47339; and 9 and 10, ribs, NMNZ S.47339. 8, an incomplete vertebra, is part of NMNZ S.47302, associated with the larger Chatham Island form. Scale bar is equal to 10 mm.

 figure a5

 

 

 

FIGURE A6. Majority-rule consensus (50%) tree treating NMNZ S.47302 and S.47304 as separate taxa (13,600 MPTs, L = 5,233 steps, CI = 0.5251, RI = 0.7020). Percentage of MPTs recovering each node is indicated at each internode in the consensus tree, and bootstrap support values (over 40% only) are numbered below them italicised in red.

 figure a6

 

 

 

FIGURE A7. Majorite-rule consensus (50%) tree excluding character scores relating to referred material of Eocene Seymour Island taxa (400 MPTs, L = 5,212, RI = 0.7014, CI = 0.5272). Percentage of MPTs recovering each node is indicated at each internode in the consensus tree, and bootstrap support values (over 40% only) are numbered below them italicised in red.

 figure a7

 

 

 

FIGURE A8. Strict consensus tree of 16,300 MPTs (length = 5,234). Bootstrap support values (over 40% only) are numbered below each node italicised in red.

 figure a8

 

 

 

FIGURE A9. A sample of the variety of equally parsimonious phylogenetic relationships recovered between Paleocene taxa (length = 5,234).

 figure a9

 

 

 

FIGURE A10. Specifics of referred hypotarsal morphology. 1, Diomedea antipodensis left (mirrored, adapted from Mayr, 2016); 2, Aphrodroma brevirostris, left (mirrored, adapted from Mayr, 2016); 3, Hydrobates castro, left (mirrored, adapted from Mayr, 2016); 4, Waimanu manneringi, right, CM zfa35; 5, Muriwaimanu tuatahi, right, 2009.99.1 (.STL file, tomographic rendering); 6, Marambiornis exilis, right, IB/P/B-0490 (modified from Jadwiszczak, 2015); 7, Delphinornis gracilis, right, IB/P/B-0279a; 8, Anthropornis nordenskjoeldi, MLP 95-I-10-142 (mirrored, modified from Jadwiszczak, 2015); 9, Palaeeudyptes klekowskii, IB/P/B-0485 (mirrored, modified from Jadwiszczak, 2015); 10, Palaeeudyptes antarcticus, right, BM A.1048; 11, Palaeospheniscus bergi, NHMUK A694 (mirrored, modified from Jadwiszczak, 2015); 12, Spheniscus magellanicus, NHMUK 2001.45.1 (mirrored, modified from Jadwiszczak, 2015); 13, Eudyptes chrysocome, NHMUK 1898.7.1.15 (mirrored, modified from Jadwiszczak, 2015); 14, Aptenodytes forsteri, NHMUK 1905.12.30.419 (mirrored, modified from Jadwiszczak, 2015); 15, Pygoscelis adeliae, unassigned from IB/P/B (mirrored, modified from Jadwiszczak, 2015); abbreviations: cl(fdl), crista lateralis flexoris digitorum longus; cl(fhl), crista lateralis flexoris hallucis longus; cm(fdl), crista medialis flexoris digitorum longus; fbl, sulcus for musculus fibularis longus; fdl, sulcus/canal for tendon of musculus flexor digitorum longus; fhl, sulcus/canal for tendon of musculus flexor hallucis longus; tfb, tuberculum musculus fibularis brevis. Dotted line represents estimated extent of bone. Not to scale.

figure a10

bloklandJacob C. Blokland. Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia.

Jacob Blokland has a Bachelor of Science in geology and biology, and a Master of Science in geology, specialising in palaeontology, from University of Canterbury, New Zealand. He is currently studying towards a Ph.D. in vertebrate palaeontology at Flinders University, Australia, with a focus on Oligocene-Miocene members of the avian family Rallidae, and their evolution. Jacob’s research interests relate to palaeoornithology, avian taxonomy, systematics, and phylogenetic methods.

 

divider

reidCatherine M. Reid. School of Earth and Environment, College of Science, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

Catherine Reid has Bachelor of Science and Master of Science degrees from the University of Auckland and a Ph.D. from the University of Tasmania (2001). Her research interests include the geological and palaeontological history of New Zealand. Catherine teaches and researches palaeontology and carbonate sedimentology at the University of Canterbury, Christchurch, New Zealand.

 

divider

worthyTrevor H. Worthy. Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia.

Associate Professor Trevor Worthy is an avian palaeontologist and has researched Australasian and Pacific avifaunas for many years. He studied at Waikato University, Hamilton, and Victoria University, Wellington, and thereafter researched the composition and palaeoecology of the New Zealand Pleistocene and Holocene avifaunas for 20 years. He then undertook a belated Ph.D. in Adelaide University, graduating in 2008, then was awarded a DSc in 2011 for publications on New Zealand and Pacific faunas. Now a Vice Chancellor's Fellow at Flinders University, he studies the origin and composition of the Australasian Oligo-Miocene avifaunas through research in South Australia and on the St Bathans Fauna from New Zealand, but has continued to make contributions on Pacific faunas.

 

divider

tennysonAlan J.D. Tennyson. Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand.

Alan Tennyson is a Curator of Vertebrates at Museum of New Zealand Te Papa Tongarewa. Alan does research in zoology, evolutionary Biology and palaeobiology, where his main research interests relate to the biogeography of New Zealand’s biota, extinction, bird palaeontology, bird taxonomy, and population monitoring and conservation of seabirds.

 

divider

clarkeJulia A. Clarke. Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, 2305 Speedway Stop C1160, Austin, Texas 78712-1692, USA. .

Julia Clarke has a Bachelor of Arts (comparative literature and geobiology) from Brown University, and a Ph.D. from the Department of Geology and Geophysics at Yale University. Currently, she is John A. Wilson Professor in vertebrate palaeontology in the Jackson School of Geosciences and a Howard Hughes Medical Institute Professor. Her research focuses on using phylogenetic methods and diverse data types to gain insight into the evolution of birds, avian flight and the co-option of the flight stroke for underwater diving. She is particularly interested in understanding shared patterns and potential causal factors in the evolution of living bird lineages. Recently her work has focused on unravelling the origin and evolution of the avian vocal organ.

 

divider

scofieldR. Paul Scofield. Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand.

Professor Paul Scofield has a Bachelor of Science in zoology, a Master of Science (Hons) in zoology, and a Ph.D. in statistics and zoology from University of Otago, New Zealand. He has worked at Canterbury Museum since 2001 and is now Senior Curator Natural History with responsibility for building and researching the vertebrate and geological collections at Canterbury Museum. Through his position as adjunct Professor in the School of Geological Sciences at the University of Canterbury he teaches at undergraduate and graduate level and supervises students completing masters' and doctoral theses. His research interests include the palaeontology and systematics of bird groups, with a focus on avifaunal diversity during the Paleocene.

APPENDIX 1

Chatham Island Paleocene fossils provide insight into the palaeobiology, evolution, and diversity of early penguins (Aves, Sphenisciformes).

CT SCANNED SPECIMENS

The positioning of bones encased within the hard lithological blocks that were CT scanned (see Materials and Methods), NMNZ S.47302 and S.47303, are indicated in Figure A1 and Figure A2 respectively. CT scanning and manipulation using Materialise Mimics also permitted insight into the cross-section of long bones in NMNZ S.47303 (Figure A3).

LINKING OF SPECIMENS

All specimens of Kupoupou stilwelli n. gen. et sp. were linked through overlapping skeletal elements (Figure A4), as well as both being found in the “bird horizon” of the Takatika Grit rock unit, and same general locality. These specimens also all share a similar size range, with intraspecific variation taken into account.

UNDESCRIBED ELEMENTS

Elements that could not be confidently identified are indicated in Figure A1 and Figure A2. Various elements were also considered too incomplete and/or too uninformative to be formally described in the main text. These elements, consisting of ribs and vertebrae, are displayed in Figure A5.

PHYLOGENETIC ANALYSES

GenBank molecular sequences

Molecular data (Table A1) were used as per the corrected dataset of Ksepka et al. (2012), available from Dryad (http:datadryad.org). See Ksepka et al. (2012) for references related to GenBank accession numbers. Genetic data for Phaethon rubricauda was added: AF158251, Stanley and Harrison (1999).

Parsimony analysis of larger Chatham Island specimens as separate taxa

Both NMNZ S.47302 and NMNZ S.47304 were treated as separate taxa in preliminary phylogenetic analyses to test whether they were compatible to be combined in further analyses. Except for this taxonomic modification, parsimony-based analysis using the same specifications as the primary search strategy produced 13,600 MPTs, L = 5,245 steps, CI = 0.5239, RI = 0.7015, HI = 0.4761. After pruning of taxa as per the primary analysis 9,586 non-duplicate MPTs were retained, L = 5,233, CI = 0.5251, RI = 0.7070, HI = 0.4749.

Following pruning, the strict consensus program recovered both of these specimens positioned on a large polytomy with several Eocene species and all Paleocene taxa except for Waimanu manneringi and Muriwaimanu tuatahi— which exist as a separate basal clade. The majority rule consensus (50%) tree (Figure A6) recovered better topological resolution, where the Waipara giant penguin is positioned one node crownwards of the Sphenisciformes base, and K. stilwelli n. gen. et sp., C. unienwillia, K. maxwelli, and a branch leading to a nested clade of S. rosieae and ?C. waiparensis are another node crownwards. NMNZ S.47304, K. biceae, and NMNZ S.47302 exist at separate nodes in succession respectively towards crown group Sphenisciformes.

While it is recognised that these two specimens were found at different topological positions in the majority-rule (50%) consensus tree, the recovery of K. biceae (and NMNZ S.47302) one node crownwards of NMNZ S.47304 was found in only 61% of MPTs, and similarly the positioning of NMNZ S.47302 a node crownwards of K. biceae occurred only in 53% of MPTs. This implies that a sizeable percentage of MPTs recovered these taxa in different topological positions. This uncertainty is illustrated in the poorly resolved strict consensus tree. Moreover, NMNZ S.47302 was found to have extremely high levels of taxon instability among trees, compared to other fossil and extant taxa (as well as compared to when both NMNZ S.47302 and S.47304 were merged). Relatively poor representation of NMNZ S.47302, S.47304 and most fossil taxa in the phylogenetic datamatrix compared to extant counterparts also precludes a robust phylogenetic hypothesis for stem relationships (though may be more beneficial than not having a hypothesis at all, see Wiens and Reeder, 1995; Wiens, 2003).

With the information at-hand, considering that these specimens were recovered at the same node in the strict consensus tree, we interpret these specimens as compatible to include as a single merged taxon for final analyses (larger Chatham Island form). Their merging is also supported by their recovery in the same approximate location, from the same horizon of the Takatika Grit on Chatham Island, as well as their comparable size. It should be noted, however, that without overlapping skeletal elements between specimens they cannot be considered as the same taxon with certainty.

Parsimony analyses excluding referred specimens of Seymour Island taxa

A preliminary analysis excluding scorings relating to all specimens referred to Seymour Island taxa was also performed. Removed codings pertained to the following taxa, which were effectively only represented by holotype specimens in the phylogenetic data matrix: Marambiornis exilis, Mesetaornis polaris, Palaeeudyptes klekowskii, Palaeeudyptes gunnari, Anthropornis sp. UCMP 321023, Anthropornis nordenskjoeldi, Anthropornis grandis, Notodyptes wimani, Delphinornis gracilis, Delphinornis arctowskii, and Delphinornis larseni. Testing the exclusion of these taxa was considered necessary due to the phylogenetic uncertainty many of these taxa create, in having been named on single elements, and additional bones uncertainly referred (see Jadwiszczak, 2006a; Jadwiszczak, 2006b; Ksepka and Clarke, 2010), to assess whether the removal of referred elements had a profound effect on topology and support values.

Parsimony-based analysis was conducted using the same specifications as the primary search strategy, with the exception of additionally excluded taxa. This produced 400 MPTs (L = 5256, RI = 0.7145, CI = 0.5240, HI = 0.4772), 340 of which were not duplicates following the pruning of further taxa (as per primary analysis), L = 5,212, RI = 0.7014, CI = 0.5272, HI = 0.4728. The strict consensus tree recovered W. manneringi and M. tuatahi as sister taxa that branch from the base of Sphenisciformes. The Waipara giant penguin is positioned one node crownwards of the sphenisciforms base in all MPTs. All other Paleocene taxa and Eocene taxa such as Mesetaornis, Delphinornis and Marambiornis exist in an unresolved polytomy one node crownwards of the Waipara giant penguin in the strict consensus tree. The majority-rule (50%) consensus tree provides better resolution to this polytomy (Figure A7), where in 63% of MPTs C. unienwillia, ?C. waiparensis, and S. rosieae form a clade that branches from this node, where the latter two have a sister taxon relationship. K. stilwelli n. gen. et sp. is recovered one node crownwards of this node, in 63% of MPTs. In 69% of MPTs, crownwards of this node, the larger Chatham Island form, K. maxwelli, Delphinornis arctowskii and Delphinornis larseni occupy an unresolved polytomy with a nested clade consisting of Delphinornis gracilis, Mesetaornis polaris and Marambiornis exilis in 51% of shortest trees. K. biceae is positioned one node crownwards of this polytomy in 69% of MPTs.

In most MPTs exclusion of material referred to Seymour Island taxa revealed some novel pairings of taxa compared to the primary search strategy (Figure 13). The late early-middle Paleocene larger Chatham Island form was recovered alongside Eocene forms, and late Paleocene K. biceae was recovered crownwards of some Eocene sphenisciforms, which, while not implausible, would imply an evolutionary scenario where Delphinornis, Marambiornis, Kaiika, and Mesetaornis exist on long branches. However, since this relationship was not found in a supermajority of trees, and is not supported by high bootstrap values, this topology cannot be treated with confidence. More material associated with each taxon is needed to inform more completely on the skeleton of each of these early penguins, in order to substantiate relational assessments. While the Seymour Island taxa often lack definitive material compared to each taxon, we opt to include material that has been referred, to more completely sample the skeletons of these taxa as is currently understood, to better represent them in the data matrix and test them phylogenetically among other penguins. Additionally, considering the exclusion of Eocene Seymour Island penguins did not considerably improve topological resolution, nor bootstrap support values, the exclusion of material referred to Seymour Island taxa was not deemed appropriate.

Final parsimony analysis

The strict consensus tree of the 16,300 MPTs (length = 5,234) is shown in Figure A8. Of these MPTs, 6,590 different topological variations of the shortest tree were retained following pruning, a sample of which, relating to Paleocene taxa, are shown in Figure A9.

Ages for taxa

The majority of ages for taxa as illustrated in Figure 13 are based on those given in Gavryushkina et al. (2017). Ages for taxa that were not included in Gavryushkina et al. (2017) are given here:

Anthropodyptes gilli —17.6-21.0. Park and Fitzgerald (2012) list this taxon as early Miocene in age between 17.6 and 21.0 million years ago.

Anthropornis sp. UCMP 321023—34-52.5 Ma. This fossil, which represents an unique Anthropornis species that has not been formally named, comes from the La Meseta Formation, Seymour Island, Antarctica (Ksepka, 2007). It is given the same age range as both A. nordenskjoeldi and A. grandis.

Arthrodytes andrewsi —23.8-25.9 Ma. Bajo de San Julián (Acosta Hospitaleche and Tambussi, 2008), or lower “Patagonian Formation” (Simpson, 1972), Santa Cruz Province, Patagonia, South America, a conservative age range spans both the lower Gran Bajo Member and the upper Meseta Chica Member, and is constrained between 23.83 and 25.93 Ma after Parras et al. (2008).

Crossvallia unienwillia— 56-59.2 Ma. The holotype was recovered from the Cross Valley C Allomember, and is cited as Thanetian in age in Jadwiszczak et al. (2013).

?Crossvallia waiparensis— 59-61.5 Ma. This taxon was described from fossils from site S2, of the Mt. Ellen Member concretionary member (as indicated in Mayr et al., 2018), of the Waipara Greensand, Waipara River, Canterbury, New Zealand (Mayr et al., 2019). It is therefore considered to be of within the same age range as Sequiwaimanu rosieae, the holotype of which was also recovered from this site (see below).

Eudyptes calauina —2.58-5.3 Ma. From the Horcon Formation, Chile, attributed to Late Pliocene in age Chávez Hoffmeister et al. (2014). We conservatively bound the age of this taxon from the base of the Pliocene to the latest Pliocene.

Hakataramea penguin—21.7-25.2 Ma. From Hakataramea Valley, New Zealand, material associated with this taxon was recovered from the Otekaike Limestone, and is Waitakian in age (Ando, 2007).

Inguza predemersus— 2.58-5.25 Ma. Associated with Langebaanweg, Cape Province, South Africa, the holotype is associated with the Muishond Fontein Phosphatic Sand Member of the Varswater Formation (Simpson, 1971a; Ksepka and Thomas, 2012), where fossils are inferred to be 5.15 ± 0.1 Ma (Roberts et al., 2011). This taxon is therefore conservatively bounded between the earliest Pliocene and the overlying Pleistocene Langebaan Formation (Roberts et al., 2011).

Kaiika maxwelli —50-63 Ma. The holotype and only known specimen was recovered in a concretion from the southern bank of the Waihao River, South Canterbury, New Zealand. The age of the specimen is uncertain, and may have originated from the Kauru Formation, as discussed in Fordyce and Thomas (2011). While the age of the Kauru Formation at the source location is problematic, the age is cited as Waipawan or Mangaorapan, but molluscs in the lower Waihao Kauru Formation characteristic of the Wangaloan Stage increases the possible age range into the Paleocene (Fordyce and Thomas, 2011). Thus, we have opted for a conservative age estimate bounded between the uppermost Mangaorapan (50 Ma) and the middle Teurian (63 Ma).

Kumimanu biceae —55.5-59.5 Ma. Mayr et al. (2017b) note that the holotype is associated with the Moeraki Formation, and is dated to the late Teurian between 55.5 and 59.5 Ma.

Nucleornis insolitus —2.58-5.25 Ma. Discovered at Koeberg Nuclear Power Station, Cape Province, South Africa, the holotype is associated with the Muishond Fontein Phosphatic Sand Member of the Varswater Formation (Simpson, 1979; Ksepka and Thomas, 2012), where fossils are inferred to be 5.15 ± 0.1 Ma (Roberts et al., 2011). This taxon is therefore conservatively bounded between the earliest Pliocene and the overlying Pleistocene Langebaan Formation (Roberts et al., 2011).

Palaeeudyptes marplesi —34.6-39.1 Ma. Material attributed to this species were recovered from the Burnside Mudstone, Kaiatan or Runangan in age (Simpson, 1971b). Based on Raine et al. (2015) this constrains the taxon’s age between 34.6 and 39.1 Ma.

Paraptenodytes antarcticus —17.9-22.1 Ma. We revised the possible age range of P. antarcticus from what was used in Gavryushkina et al. (2017) based on 87Sr/86Sr dates of the Monte León Formation, between 17.91 Ma at the top of the Formation, and 22.12 Ma as an older limit (Parras et al., 2012).

Paraptenodytes brodkorbi —23.8-25.9 Ma. From the San Julián Formation or lower “Patagonian Formation”, Patagonia, South America (Simpson, 1972; Ksepka and Ando, 2011), a conservative age range spans both the lower Gran Bajo Member and the upper Meseta Chica Member, and is constrained between 23.83 and 25.93 Ma after Parras et al. (2008).

Paraptenodytes robustus —23.8-25.9 Ma. From the San Julián Formation or lower “Patagonian Formation”, Patagonia, South America (Simpson, 1972; Ksepka and Ando, 2011), a conservative age range spans both the lower Gran Bajo Member and the upper Meseta Chica Member, and is constrained between 23.83 and 25.93 Ma after Parras et al. (2008). Material attributed to this taxon from Bahía Inglesa, Chile were shown to be unreliable by Chávez (2007).

Platydyptes amiesi —21.7-27.3 Ma. The holotype is Waitakian of the Hakataramea Valley, New Zealand (Marples, 1952), and material referred to this taxon may also be associated with the Duntroonian Stage (Simpson, 1971b). Based on the dates given in (Raine et al., 2015), this taxon is therefore constrained between the base of the Duntroonian as an older age limit (27.3 Ma), and the base of the Otaian Stage as the younger age limit (21.7 Ma).

Pseudaptenodytes macraei —5.0-6.0 Ma. Park and Fitzgerald (2012) list this taxon as ranging from the late Miocene (6 Ma) to early Pliocene (5 Ma).

SAM P7158 cf. Palaeeudyptes —36.5-38 Ma. In a review of Australian fossil penguins Park and Fitzgerald (2012) list SAM P7158 as Late Eocene in age between 36.5 and 38 Ma.

Sequiwaimanu rosieae —59-61.5 Ma. Recovered from the Waipara Greensand near the position of where the holotype of Waimanu manneringi was discovered, this material is dated to the early late Teurian (Mayr et al., 2018), about 61 Ma. A conservative age range to conform to early late Teurian dates based on Raine et al. (2015) potentially constrains the fossils between the base age of the upper Teurian of 61.5 Ma and a lower limit of 59 Ma.

Sphenisciformes indet. NMV P221273—7.25-7.92 Ma. This specimen was recovered from the lower light grey unit of the Port Campbell Limestone, Portland Bay, Victoria, Australia, and is described as Tortonian in age (Park et al., 2016).

Sphenisciformes indet. SAM P10863—23-30 Ma. The partial right humerus of SAM P10863 was recovered from the Gambier Limestone, Mt Gambier, South Australia, and is given an age of ~23-30 Ma in a review of Australian fossil penguins (Park and Fitzgerald, 2012).

Waipara Greensand giant penguin CM 2016.158.1—59-61.5 Ma. This specimen was recovered from the Waipara Greensand 11 m above those where the holotype of Waimanu manneringi was discovered, and is dated to the early late Teurian (Mayr et al., 2017a), about 61 Ma. A conservative age range to conform to early late Teurian dates based on Raine et al. (2015) potentially constrains the fossils between the base age of the upper Teurian of 61.5 Ma and a lower limit of 59 Ma.

COMPARATIVE MATERIAL

Specimens examined

Specimens examined for each referred species, and any coding changes for characters are listed in Table A2. Note that for species that were newly coded in full, such as Phaethon rubricauda, Kupoupou stilwelli n. gen. et sp., the Large Chatham Island form, and ?Crossvallia waiparensis, coding of these taxa is available in the NEXUS file of the Chatham matrix.

HYPOTARSUS MORPHOLOGY

Inconsistencies exist in the literature regarding how specific features of the hypotarsus are labelled, on the proximal tarsometatarsus, in Sphenisciformes. Building on the work of Jadwiszczak (2015), we have labelled structures of hypotarsus of various sphenisciforms to conform with the terminology specified in Mayr (2016), as shown in Figure A10.

MORPHOLOGICAL CHARACTER DEFINITIONS AND STATES

Citations corresponding to where each character definition originated is indicated by the following abbreviations: New characters or those that have been modified in this study are also indicated. A, Ando (2007); AH, Acosta Hospitaleche et al. (2007); BG, Bertelli and Giannini (2005); C, Clarke et al. (2007); CHa, Chávez Hoffmeister et al. (2014); CHb, Chávez Hoffmeister (2014b); CL, Clarke et al. (2010); D, Degrange et al. (2018); GB, Giannini and Bertilli (2004); K, Ksepka et al. (2006); KC, Ksepka and Clarke (2010); KT, Ksepka and Thomas (2012); KF, Ksepka et al. (2012); LZ, Livezey and Zusi (2007); M, Mayr et al. (2017b); OH, O'Hara (1989).

Integument:

1. Tip of mandibular rhamphotheca, profile in lateral view: pointed (0); slightly truncated (1); strongly truncated, squared off (2); truncated but with a rounded margin (procellariiform-like) (3). (GB1)

2. Longitudinal grooves on base of culmen: absent (0); present (1). (GB2)

3. Longitudinal grooves on base of latericorn and ramicorn: absent (0); present (1). (GB3)

4. Feathering of maxilla: totally unfeathered (0); slightly feathered, less than half the length of maxilla feathering that reaches half the length of maxilla. (GB4) Ordered.

5. Ramicorn, inner groove at tip: absent (0); present and single (1); present and double (2). (GB5) Ordered.

6. Orange or pink plate on ramicorn: absent (0); present (1). (GB6)

7. Plates of rhamphotheca, inflated aspect: absent (0); present (1). (GB7)

8. Gape: not fleshy margin (0); narrowly fleshy margin (1); markedly fleshy (2). (GB8) Ordered.

9. Ramicorn primary colour pattern: black (0); red (1); pink (2); yellow (3); orange (4); green (5); blue (6); black rostrally but pinkish-orange caudally (7). (GB9)

10. Latericorn, ramicorn, and premaxillary nail, light distal mark: absent (0); present (1). (GB10)

11. Latericorn colour: black (0); dark red and black (1); orange (2); yellow (3); green (4); blue (5). (GB11)

12. Culminicorn: black (0); reddish orange (1); pale orange (2). (GB12)

13. Maxillary and mandibulary unguis, color: black (0); reddish orange (1); yellow (2); green (3); blue-grey (4). (GB13)

14. Ramicorn, ultraviolet reflectance peak (corresponds to the orange spot): absent (0); present (1). (KC14)

15. Bill of downy chick, colour: dark (0); reddish (1); pale, variably horn to yellow (2); subtle dark reddish markings at base (3); bluish (4). (GB14)

16. Bill of immature, colour: dark (0); bicoloured red and black (1); red (2); yellow (3); grey (4). (GB15)

17. External nares: present (0); absent (1). (GB17)

18. Nostril tubes in adult: absent (0); present (1). (GB16)

19. Nostril tubes in hatchling: absent (0); present (1). (GB16)

20. External nares: well-separated (0); fused at midline (1). (KC19)

21. Iris colour: brown (0); silvery grey (1); claret red (2); yellow (3); white (4). (GB18)

22. Scale-like feathers: absent (0); present (1). (GB19)

23. Rachis of contour feathers: cylindrical (0); flat and broad (1). (GB20)

24. Rectrices: form a functional fan (0); do not form a fan (1). (GB21)

25. Remiges: differentiated from contour feathers (0); indistinct from contour feathers (1). (GB22)

26. Apteria: present (0); absent (1). (GB23)

27. Molt of contour feathers: gradual (0); simultaneous (1). (GB24)

28. Yellow pigmentation in crown feathers (pileum): absent (0); present (1). (GB25)

29. Head plumes (cristea pennae): absent (0) present (1). (GB26)

30. Head plumes: compact (0); sparse (1). (GB27)

31. Head plumes: directed dorsally (0); directed posteriorly, not drooping (1); directed posteriorly, drooping (2). (GB28)

32. Head plumes, position of origin: at base of bill close to gape (0); on the recess between latericorn and culminicorn (1); on forehead (2). (GB29) Ordered.

33. Head plumes, colour: yellow (0); orange (1). (GB30)

34. Nape (occiput), crest development: absent (0); slight (1); distinct (2). (GB31) Ordered.

35. Periocular region: black (0); white (1); yellow (2) bluish grey (3). (GB32)

36. Fleshy eyering: absent (0); present (1). (GB33)

37. White eyering: absent (0); present (1). (GB34)

38. White eyebrow (supercilium): absent (0); narrow, from postocular area (1); narrow, from preocular area (2); wide, from preocular area (3). (GB35) Ordered.

39. Loreal area (lorum): feathered (0); patch of bare skin extending from eye to base of culminicorn (1); patch of bare skin extends from eye to gape, with narrow patch of bare skin at margin of lower beak (2); patch of bare skin extends from eye to gape, with extensive patch of bare skin at margin of lower beak (3). (GB36) Ordered.

40. Auricular patch (regio auricularis): absent (0); present (1). (GB37)

41. Throat pattern: black (0); white (1); yellow (2); irregularly streaked (3); with chinstrap (4). (GB38)

42. Collar: absent (0); at most slight notch present (1); present, diffusely demarked (2); black, strongly demarked (2). (GB39) Ordered.

43. Breast, golden colour: absent (0); present (1). (GB40)

44. Dorsum: black (0); dark bluish grey (1); light bluish grey (2). (GB41)

45. Black marginal edge of dorsum between lateral collar and axillary patch, contrasting with dorsum: absent (0); present (1). (GB42)

46. Black dots irregularly distributed over white belly: absent (0) present (1). (GB43)

47. Flanks, dark lateral band reaching the breast: absent (0); present (1). (GB44)

48. Distinct dark axillary patch of triangular shape: absent (0); present (1). (GB45)

49. Flanks, extent of dorsal dark cover into the leg: incomplete, not reaching tarsus (0); complete, reaching tarsus (1). (GB46)

50. Rump, colour: indistinct in colour from dorsum (0); distinct white patch (1). (GB47)

51. Tail length: short, the quills barely emerge from the rump (0); quills distinctly developed (1). (GB48)

52. Outer rectrices, colour: same colour as inner rectrices (0); lighter than inner rectrices (1). (GB49)

53. White line connecting leading edge of flipper with white belly: absent (0); present (1). (GB50)

54. Flipper, upperside, light notch at base: absent (0); present (1). (GB51)

55. Leading edge of flipper, pattern of upperside: black (0); white (1). (GB52)

56. Leading edge of flipper, pattern of underside: white (0); incompletely dark (1); completely dark and wide (2). (GB53)

57. Flipper, underside, dark elbow patch: absent (0); present (1). (GB54)

58. Flipper, underside, tip pattern: immaculate (0); patchy, in variable extent (1); small circular dot present (2). (GB55)

59. Immature plumage, white eyebrow (supercilium): absent (0); present (1). (GB56)

60. Immature plumage, throat pattern (jugulum): black (0); mottled (1); white (2); brown (3). (GB57)

61. Immature plumage, flanks, dark lateral band: absent (0); present (1). (GB58)

62. Chicks hatch almost naked: no (0); yes (1). (GB59)

63. Dominant colour pattern of first down: pale grey (0); distinctly brown (1); bicoloured, dark above and whitish below (2); uniformly blackish grey (3). (GB60)

64. Dominant colour pattern of second down: pale grey (0); distinctly brown (1); bicoloured, dark above and whitish below (2); uniformly blackish grey (3). (GB61)

65. Chick, second down, collar: absent (0); present (1). (GB62)

66. Feet, dorsal colour: dark (0); pink (1); orange (2); white-flesh (3); blue (4). (GB63)

67. Feet, soles distinctly darker than dorsal surface: absent (0); present (1). (GB64)

68. Feet, unguis digiti: flat (0); compressed (1). (BG65)

Reproductive Biology:

69. Clutch size: two eggs (0); one egg (1). (GB65)

70. Incubatory sac: absent (0); present (1); (GB66)

71. Nest: no nest, incubation over the feet (0); nest placed underground, either burrowed in sand or inside natural hollow or crack (1); open nest, a shallow depression on bare ground or in midst of vegetation (3). (GB67)

72. Size of first egg relative to the second egg: similar (0); first egg smaller (1); first egg larger (2). (GB68)

73. Crèche: absent (0); small, 3-6 birds (1); formed by dozens to hundreds of immatures (2). (GB69)

74. Egg shape: oval (0); conical (1); spherical (2). (BG71)

75. Ecstatic display: absent (0); present (1). (BG72)

Osteology:

76. Premaxilla, tip (rostrum maxillare): pointed (0); weakly hooked (1); strongly hooked (2). (GB0) Ordered.

77. Internarial bar (pila supranasalis) shape in cross section: sub-oval (0); inverted U-shape (1). (C75)

78. Internarial bar (pila supranasalis), width: wide throughout its length (0); slender, slightly constricted laterally (1). (OH6)

79. Internarial bar (pila supranasalis), profile in lateral view: dorsal edge curves smoothly to tip of beak (0); pronounced step in dorsal edge (1). (KC78)

80. Nasal cavity, external naris (cavum nasi, apertura nasi ossea), caudal margin: extended caudal to the rostral margin of the hiatus orbitonasalis (0); not extended caudal to the rostral margin of the hiatus orbitonasalis (1). (OH5)

81. Premaxilla, frontal process, naso-premaxillary suture: visible (0); obliterated (1). (BG95)

82. Basioccipital, subcondylar fossa (fossa subcondylaris): absent or shallow (0); deep (1). (BG73)

83. Supraoccipital, paired grooves for the exit of v. occipitalis externae (sulcus vena occipitalis externae): poorly developed (0); deeply excavated (1). (BG74)

84. Frontal, shelf of bone bounding salt-gland fossa (fossa glandulae nasalis) laterally: absent (0); present (1). (OH10)

85. Squamosal, temporal fossa (fossa temporalis), size: fossae separated by considerable wide surface (at least the width of the cerebellar prominence (0); more extensive, fossae meeting or nearly meeting at midline of the skull (1). (BG76)

86. Squamosal, temporal fossa (fossa temporalis), depth of caudal region: flat (0); shallow (1); greatly deepened (2). (BG77) Ordered.

87. Squamosal, development of the opening that transmits the a. ophthalmica externa in the caudoventral area of the temporal fossa (near nuchal crest): small or vestigial (0); well-developed (1). (BG78)

88. Orbit, fonticuli orbitocraniales: small or vestigial (0); broad and conspicuous openings (1). (BG79)

89. Ectethmoid: absent (0); weakly developed, widely separate from the lacrimal (1); well developed, contacting or fused to the lacrimal (2). (BG80)

90. Lacrimal, descending process: unperforated (0); perforated (1). (OH11)

91. Lacrimal, pneumatic foramen: absent (0); present by large lacrimal foramen. (D90)

92. Lacrimal: reduced, concealed in dorsal view (0); small portion exposed in dorsal view (1); well-exposed in dorsal view (2). (BG82) Ordered.

93. Lacrimal, contact with frontal: suture (0); fusion (1). (KT89)

94. Lacrimal, dorsal process: closely applied to the nasal (0); rostral arm of dorsal process separated from the nasal by a slit-like rostro-caudally elongate opening (1). (BG83)

95. Basitemporal plate (lamina parasphenoidalis), dorsoventral position with respect to the occipital condyle: ventral to the level of the condyle (0); at the level of the condyle (1); dorsal to the level of the condyle, surface depressed (2). (BG86) Ordered.

96. Basipterygoid process (processus basipterygoideus): absent (0); vestigial or poorly developed (1); well-developed (2). (BG87) Ordered.

97. Eustachian tubes (tuba auditiva): open or very little bony covering near the caudal end of the tube (0); mostly enclosed by bone (1). (BG88)

98. Pterygoid, shape: elongated (0); slight lateral expansion of rostral end (1); rostral end broad, pterygoid sub-triangular (2). (BG89) Ordered.

99. Palatine, lamella choanalis: curved and smooth plate, slightly differentiated from main palatine blade (0); ridged, distinct from main blade by a low keel (1); extended vertically ventrally forming the crista ventralis (2). (BG90) Ordered.

100. Vomer: laterally compressed, vertical laminae and free from palatines (0); horizontally flattened laminae and ankylosed with palatines (1). (BG91)

101. Facial foramen (foramen n. facialis) (ossa otica, fossa acustica interna): absent (2); present (1). (BG92)

102. Jugal arch, bar shape in lateral view: straight (0); slightly curved (1); ventrally bowed (2); strongly curved, sigmoid shape (3). (BG93) Ordered.

103. Jugal arch, dorsal process (this pointed process is located on the caudal end of the jugal, adjacent to the condyle for articulation with the quadrate: absent (0); present (1). (BG94)

104. Quadrate, relative lengths of otic and orbital processes (processus oticus and processus orbitalis): orbital process longer (0); otic process longer (1). (KC102)

105. Quadrate, otic process (processus oticus), rostral border, tubercle for m. adductor mandibulae externus, pars profunda: absent (0); present, as a ridge (1); present, as a tubercle (2). (BG96) Ordered.

106. Quadrate, otic process (processus oticus), rostral border, tubercle for m. adductor mandibulae externus, pars profunda: contiguous with squamosal capitulum (0); separated from squamosal capitulum (1). (KC104)

107. Quadrate, processus oticus, caudal margin in lateral view: straight (0); flexed so as to be concave caudally (1). (A9)

108. Tomial edge (crista tomialis): plane of tomial edge approximately at the level of the basitemporal plate (lamina parasphenoidalis) (0); dorsal to the level of the basitemporal plate (1). (BG97)

109. Mandible, symphysis: extensive bony connection (0); short terminal bony connection (1). (C101)

110. Mandible, posteriorly projected midline spur from dentary underlying symphysis: absent (0); present (1). (KC107)

111. Mandible, rostral fenestra (fenestra mandibulae rostralis): imperforate or small opening (0); large opening (1). (OH8)

112. Mandible, caudal fenestra (fenestra mandibulae caudalis): open, can be seen through from the medial or lateral aspects (0); nearly or completely concealed by the splenial medially (i.e., fenestra not visible in the medial aspect) (1). (OH9)

113. Mandible, mandibular ramus: depth subequal over entire ramus (0); pronounced deepening at midpoint (1). (BG101)

114. Mandible, mandibular ramus: essentially straight or gently sloping (0); pronounced ventral deflection near midpoint (1). (KC112)

115. Mandible, dentary, length of dorsal edge relative to mandibular ramus length in lateral view: markedly more than half the length of ramus (0); approximately half the length of ramus (1). (BG103)

116. Mandible, articular, medial process (processus medialis): not hooked (0); hooked (1). (BG104)

117. Mandible, angular, aspect in dorsal view: sharply truncated caudally projected, forming retroarticular process (processus retroarticularis). (BG106)

118. Mandible, angular, retroarticular process (processus retroarticularis), aspect in dorsal view in relation to the articular area for the quadrate between the lateral and medial condyles (condylus lateralis and condylus medialis): broad, approximately equal to the articular area (0); moderately long, narrower than the articular area (1); very long, longer and narrower than the articular area (2). (BG105) Ordered.

119. Mandible, medial emargination between medial and retroarticular processes (processus retroarticularis and processus medialis): absent (0); weak (1); concavity (2); strong concavity (3). (K108) Ordered.

120. Mandible, coronoid process (processus coronoideus), position on the dorsal margin of the mandible with respect to caudal mandibular fenestra (fenestra mandibulae caudalis): markedly rostral (0); on the rostral end of the fenestra (1) caudal to fenestra (2). (BG98)

121. Atlas, processus ventralis: absent or slightly developed (0); well developed, high and prominent ridge on the ventral surface of the arcus atlantis (1). (BG108)

122. Transition to free cervicothoracic ribs: starting at 13th cervical vertebra (0); starting at 14th cervical vertebra (1); starting at 15th cervical vertebra (2). (BG109) Ordered.

123. Cervical vertebrae, transverse process (processus transversus) in last five cervical vertebrae: not elongated laterally (0); greatly elongated laterally (1). (BG111)

124. Thoracic vertebrae, posterior-most vertebrae: heterocoelous (0); weakly opisthocoelous (1); strongly opisthocoelous (2). (K114) Ordered.

125. Thoracic vertebrae, deep excavation on lateral face of posterior thoracic vertebrae: absent (0); present (1). (KC124)

126. Synsacrum, number of incorporated vertebrae: nine (0); eleven (1); twelve (2); thirteen (3); fourteen (4); fifteen or more (5). (C117)

127. Synsacrum, height of crista synsacri between acetabula: flat or weakly projected (0); strongly projected (1). (KC126)

128. Synsacrum, first incorporated vertebra, position of fovea costalis: caudal to level of processus transversus (0); cranial to level of transverse process (1). (KF230)

129. Synsacrum, ventral surface of first few incorporated vertebrae: rounded or flattened (0); sharp, blade-like ventral margin (1). (A63)

130. Caudal vertebrae: seven (0); eight (1); nine or more (2). (BG113) Ordered.

131. Pygostyle, shape: tapers to a narrow edge both dorsally and ventrally as in most volant birds (0); triangular in cross-section with a wide, flat ventral margin (1). (KF232)

132. Thoracic ribs, uncinate processes (costae, processes uncinati): elongate, narrow (0); wide at base, spatulate (1); extremely wide at base (2). (BG114)

133. Thoracic ribs, uncinate processes (costae, processes uncinati): fused to ribs (0); unfused (1). (KC129)

134. Sternum, external spine (spina externa rostri): absent (0); present (1). (OH13)

135. Sternum, facies articularis furculae projects as a distinctive process: absent (0); present (1). (BG116)

136. Sternum, orientation of sulcus articularis coracoideus in ventral view: sulci oriented in essentially straight horizontal line (0); sulci directed caudolaterally so as to together form an inverted U shape (1). (A15)

137. Sternum, articular facets for coracoids (sulcus articularis coracoideus): meet or overlap one another at midline (0); separated by wide non-articulatory surface (1). (C122)

138. Sternum, labrum internum: continues as sharp ridge onto the base of the spina externa (0); fades away without continuing onto the base (1). (C123)

139. Sternum, caudal incisurae. none (0); two (1); four (2). (KC134)

140. Sternum, trabecula lateralis projects caudal to main body of sternum: no (0); yes (1). (KF234)

141. Furcula, hypocleidium (apophysis furculae): absent or low knob-like process (0); long, blade-like process (1). (BG117)

142. Furcula, ramus: sub-ovoid in cross-section at omal end (0); mediolaterally flattened and craniocaudally expanded at omal end (1). (CL218)

143. Scapula, acromion: craniodorsally directed, nearly parallel to long axis of scapular shaft at apex (0); forms a blunt triangular projection with apex directed approximately at 45 degree angle from long axis of scapular shaft (1); narrow and tapering, apex omally directed (2); narrow and tapering, apex directed at a right angle to scapular shaft (3). (CL223) Ordered.

144. Scapula, blade, caudal half (corpus scapulae, extremitas caudalis: blade-like (0); slightly expanded (1); broadly expanded, paddle-shaped (2). (BG118) Ordered.

145. Scapula, facies articularis humeralis: rounded, projecting from shaft of scapula (0); compressed and ovoid, projecting from shaft of scapula (1); flattened and nearly merged with shaft of scapula (2). (KF235)

146. Coracoid, length: shorter than humerus (0); greatly elongated, longer than humerus (1). (KC137)

147. Coracoid, scapular cotyle (scapula cotylaris) deep and socket-like (0); moderately concave (1); nearly flat (2). (CL217)

148. Coracoid, processus acrocoracoideus, region of tuberculum brachiale: craniocaudally compressed (0); craniocaudally expanded, with a large flat surface cranial to tuberculum brachiale (1). (A22)

149. Coracoid, medial margin, coracoidal fenestra: complete (0); incomplete (1) absent (2). (OH14)

150. Coracoid, foramen nervi supracoracoidei, Mayr (2005) cited ontogenetic evidence that this foramen is not homologous to the coracoidal fenestra of penguins: absent (0); present (1). (K122)

151. Coracoid, sternal margin (extremitas sternalis coracoidei): greatly expanded (0); moderate expansion (1). (BG120)

152. Coracoid, profile of the sternal margin (extremitas sternalis coracoidei) in ventral view: convex (0); concave (1); flat (2). (K124)

153. Coracoid, facies articularis sternalis, dorsal surface: single facet (0); two facets (1). (KF236)

154. Coracoid, lateral process (processus lateralis): absent or highly reduced (0); well-developed (1). (KC142)

155. Forelimb elements: sub-circular in cross section (0); strongly dorsoventrally compressed (1). (BG121)

156. Humerus, head, very developed and reniform, continuous with tuberculum dorsale: moderate (0); enlarged and elliptical (1); very enlarged, hemispherical to reniform (2). (BG122) Ordered.

157. Humerus, head, proximal view, respect to the cranio-caudal axis: at midline (0); dorsocaudal (1); caudal (2). (CHb3) Ordered.

158. Humerus, head, dorsal (posterior) view proximal edge shape: semicircular, apex of humeral head located near midline (0); asymmetric arch with caudal apex, slightly prominent (1); asymmetric arch with caudal apex, strongly prominent (2). (C132)

159. Humerus, head, dorsal (posterior) view, notch between head and dorsal tubercle: present (0); absent (1). (CHa157)

160. Humerus, pit for ligament insertion on proximal surface adjacent to head: absent or very shallow (0); deep (1). (K128)

161. Humerus, dorsal tubercle, insertion of minor deltoid muscle, groove on proximal dorsal surface distocaudally from dorsal tubercle towards the base of the humerus head: present, deep dorsoproximal groove (0); inconspicuous to absent (1). (CHb7) Modified: Wording in definition changed for clarification.

162. Humerus, capital groove, position: caudal (0); ventrocaudal (1); ventral (2). (CHb8) Ordered.

163. Humerus, incisura capitis (capital groove), connection with sulcus transversus (transverse groove): essentially confluent with sulcus transversus, forming a single (0); connected through a narrow groove (1); completely separated (2). (K127)

164. Humerus, secondary tricipital fossa, connection with the capital incisure (capital groove): continuous, both structures are undifferentiated (0); connected, both structures are distinctive (1); completely separated (2). (CL222) Ordered.

165. Humerus, humeral intumenscentia, projection from humeral shaft: ventrally projected (0); caudally projected (1); caudoventrally projected, being well exposed in cranial view (2). (K129) Ordered.

166. Humerus, tricipital fossa, proximal view, rim, proximal margin of tricipital fossa (fossa pneumotricipitalis ventralis): not exposed to slightly exposed at the caudoventral margin (0); well-exposed along the caudal margin (1). (K135)

167. Humerus, tricipital fossa, caudal view, margin: strongly concave (0); straight to slightly concave (1). (KT153)

168. Humerus, tricipital fossa (fossa tricipitalis), developed: shallow, with penetrating pneumatic foramina (0); moderate, without pneumatic foramen (1); deep, without pneumatic foramen (2). (BG123)

169. Humerus, tricipital fossa (fossa tricipitalis): single (0); bipartite (1). (BG124)

170. Humerus, ventral tubercle (tuberculum ventrale), dorsal (caudal) view, caudal projection: long, beyond the head (0); short, at level with the head (1). (CHb16)

171. Humerus, ventral tubercle, tubercle fossa: very shallow, caudal (0); deep, caudal (1); deep, caudoventral (2). (CHb17)

172. Humerus, deltoid crest, cranial coracobrachial muscle scar (impressio m. pectoralis): superficial, poorly-defined scar (0); shallow, well-defined oblong fossa (1); deep, well-defined oblong fossa (2). (BG125) Ordered.

173. Humerus, supracoracoideus muscle scar, shape (impressio insertii m. supracoracoideus): small, semicircular scar (0); strongly protruding, greatly elongated over dorsal surface (1); flat, greatly elongated over dorsal surface (2). (K133)

174. Humerus, supracoracoideus muscle scar, position: on the dorsal tubercle, at the proximal end of the humerus (0); on shaft dorsal surface, straight to slightly oblique (1); on shaft dorsal surface, strongly oblique (2). (CHb20) Ordered. Modified: Wording was changed for character state 0, for clarification.

175. Humerus, supracoracoideus and latissimus dorsi muscle scars, separation (impressio insertii m. supracoracoideus and m. latissimus dorsi): separated by a wide gap (0); separated by a moderate gap separated by small gap or confluent. (K134) Ordered.

176. Humerus, caudal coraacobrachial muscle scar (coracobrachialis caudalis scar), contact with the distal margin of head: absent (0); present (1). (CL219)

177. Humerus, caudal coracobrachial muscle attachment (coracobrachialis caudal scar): subcircular fossa (0); small tubercle (1); flattened wide ovoid scar (2); flattened narrow elongate scar (3). (CL220) Ordered.

178. Humerus, groove for coracobrachialis nerve: absent or poorly defined (0); sharp, narrow sulcus (groove) (1). (CL221)

179. Humerus, shaft, craniocaudal (dorsoventral) width: shaft thins or maintains width distally (0); shaft widens distally (1). (K136)

180. Humerus, nutrient foramen (foramen nutricum) position: situated on ventral face of shaft (0); situated on caudal face of shaft (1). (C143)

181. Humerus, shaft, ventral (anterior) view, elongate furrow along caudal margin: absent (0); present (1). (C144)

182. Humerus, shaft, ventral (anterior) view, sigmoid curvature: absent or weak (0); strong (1). (K137)

183. Humerus, shaft, shaft robustness index (proximodistal length/craniocaudal width at middle point): elongated SRI>7 (0); greatly slender, 7>SRI>6 (1); slender, 6>SRI>5 (2); thick, 5>SRI>4 (3); bulky, SRI<4 (4). (CHa176) Ordered.

184. Humerus, dorsal (posterior) view, preaxial angle: absent or inconspicuous (0); well defined (1). (CHa177)

185. Humerus, dorsal (posterior) view, caudal (ventral) edge, concavity proximal to the dorsal trochlear ridge: present (0); absent (1). (CHb31)

186. Humerus, development of dorsal supracondylar tubercle (processus supracondylar dorsalis): absent (0); vestigial, compact tubercle (1); short process (2); elongate process, well exposed in distal view (3). (BG126)

187. Humerus, dorsal (posterior) view, dorsal trochlear ridge, projection in relation with the caudal (ventral) margin of the shaft: surpassing it (0); reaching the margin (1); does not reach the margin (2). (BG128)

188. Humerus, brachial muscle scar, scar for origin of m. brachialis: cranial ovoid fossa (0); inconspicuous and elongate scar on the cranial margin, between dorsal condyle and preaxial angle (1); elongate scar on the cranial margin, with deep fossa distal to the preaxial angle (2). (A34)

189. Humerus, angle between main axis of shaft and tangent of dorsal and ventral condyles (condylus dorsalis and condylus ventralis): less than 30 degrees (0); 30 to 40 degrees (1); greater than or equal to 40 degrees (2); nearly 90 degrees (3). (K141)

190. Humerus, ulnar condyle (condylus ventralis), cranial (dorsal) and distal view: spheroidal, displaced over the ventral (anterior) edge (0); spheroidal, almost parallel to dorsal condyle (1); flattened, almost parallel to dorsal condyle (2). (K142) Ordered.

191. Humerus, distal end, humerotricipital groove: absent (0); present (1); present, delimited by troclear ridges (2). (CHb37)

192. Humerus, distal end, scapulotricipital groove (demarcation of sulcus scapulotricipitalis): not demarcated (0); well-marked groove (1); well-marked, ventrally delimited by the middle trochlea ridge (2); deep groove, delimited by the dorsal and middle trochlear ridges (3). (BG127) Ordered.

193. Humerus, distal view, scapulotricipital and humerotricipital grooves: separated (0); cranially connected (1). (CHb39)

194. Humerus, distal view, ratio ventral condyleadjacent shelf, ratio of condyle width: large, ratio <1.3 (0); moderate, 1.3\< ratio <2 (1); greatly reduced, ratio >2 (2). (K143) Ordered.

195. Humerus, ratio of width of proximal end of humerus to width of shaft. 2.4 or more (0); <2.4 (1). (M247)

196. Radius, shaft: sub-cylindrical (0); broad and flattened (1). (KC166)

197. Radius, proximally projecting spike-like process at cranial margin: absent (0); present (1). (KF239)

198. Ulna, olecranon position: arises at level of or proximally surpassing humeral cotylae (0); slightly displaced from cotylae (1); located one fourth of length to proximal end (2). (K144) Ordered.

199. Ulna, olecranon shape: short and robust tab-like projection with a rounded posterior margin (0); tab-like projection with a squared posterior margin (1); tab-like projection with a distinctive angular posterior margin (2). (CHa188) Separation of the position and shape of the olecranon into two independent characters, previously coded together in K144.

200. Ulna, incisura radialis: concave in proximal view, so that the ulna contacts the proximal radius at both its caudal and ventral surfaces (0); obsolete, so radius and ulna abut one another at a nearly flat contact (1). (KF240)

201. Ulna, presence of processus supracondylaris dorsalis (dorsal supracondylar process of ulna): present (0); absent (1). (M246)

202. Ulna, distinct process extending toward sulcus humerotricipitalis of humerus: absent (0); present (1). (K145)

203. Ulna, shaft shape: sub-cylindrical (e.g., Diomedea) (0); weak dorsoventral flattening, craniocaudally narrower distally (e.g., Sequiwaimanu) (1); strong dorsoventral flattening, prominent craniocaudal widening (e.g., Spheniscus) (2). (This study) Ordered.

204. Ulnare: U-shaped (0); triangular, fan-shaped wedge (1). (KC169)

205. Ulnare, distal angle (This character refers to the distal angle in the specialized fan-shaped ulnare of penguins and is considered non-comparable for outgroup taxa): rounded (0); pointed (1). (KF241)

206. Carpometacarpus, pisiform process (processus pisiformis): well-projected round tubercle (0); reduced to a low ridge (1). (C155)

207. Carpometacarpus, distal facet on metacarpal I: absent (0); present (1). (C156)

208. Carpometacarpus, metacarpal II, distinct anterior bowing: absent (0); present (1). (C157)

209. Carpometacarpus, extension of metacarpals II and III: subequal or III slightly shorter (0); metacarpal III projects markedly distal of metacarpal II (1). (C158)

210. Carpometacarpus, metacarpal III, distal articular surface (facies articularis digitalis major): wedge shaped or broadens anteriorly in distal view (0); slightly depressed ovoid surface (1). (C158)

211. Carpometacarpus, extensor process (processus extensorius): present (0); absent (1). (KC175)

212. Carpometacarpus, metacarpal II, distal expansion: absent (0); present (1). (KC176)

213. Phalanx III-1, proximal process: absent (0); present (1). (BG130)

214. Manual phalanges: much shorter than phalanx II-1 (0); phalanx II-1 and phalanx III-1 subequal in length (1). (C161)

215. Phalanges of manus, length relative to carpometacarpus: long (0); short (1). (BG131)

216. Fusion of ilia to synsacrum: unfused (0); partially fused (1); well fused (2). (K149) Ordered.

217. Pelvis, preacetabular ilia: flat, well-separated (0); approach one another, but do not contact at midline (1); contact at midline forming canalis iliosynsacralis (2). (KC181)

218. Pelvis, foramina intervertebralia large, forming wide openings on dorsal surface of pelvis: absent (0); present (1). (KC182)

219. Ilium, projected postiliac spine: absent (0); present (1). (KC183)

220. Pelvis, size of foramen ilioischiadicum and foramen acetabuli: foramen ilioischiadicum smaller or similar in size (0); foramen ilioischiadicum larger (1). (OH16)

221, Pelvis, fenestra ischiopubica (pelvis et os coxae, fenestra isquiopubica): very wide and closed at its caudal end (0); slit-like and open at its caudal end (1). (BG133)

222, Ischium, caudal extent in relation to postacetabular ilium: ischium shorter than ilium (0); ischium projects slightly beyond the ilium (1); ischium projected far caudal to ilium (2). (BG134)

223. Patella: absent, unossified, or a small ossicle (0); present as a large, block-like element (1). (KC 187)

224. Patella, sulcus m. ambiens: shallow groove (0); deep groove (1); perforated (2). (BG135)

225. Tibiotarsus, crista patellaris: slightly developed (0); well-projected (1); greatly elongated (2). (BG136)

226. Tibiotarsus, shaft, craniocaudal flattening: weak, midshaft craniocaudal depth greater than 75% mediolateral width (0); strong, midshaft craniocaudal depth equal to or less than 75% mediolateral width (1). (C169)

227. Tibiotarsus, sulcus extensorius: laterally positioned (0); close to midline (1); medially positioned (2). (K139)

228. Tibiotarsus, notch in distal edge of medial condyle (condylus medialis): present (0); absent (1). (AH38). 

229. Tibiotarsus, lateral condyle (condylus lateralis) in lateral profile: ovoid (0); subcircular (1). (AH37)

230. Tibiotarsus, medial margin in distal view: margin is nearly straight (0); margin strongly convex (1). (KF242)

231. Tarsometatarsus, elongation index (proximodistal length/mediolateral width at proximal end): slender, EI>3.0 (0); shortened, 3.0>EI>2.5 (1); strongly shortened, 2.5>EI>2.0 (2); very strongly shortened, EI<2.0 (3). (BG138) Ordered.

232. Tarsometatarsus, proximal view, dorsoplantar compression (maximum lateromedial widthdorsoplantar width at middle point): weak, <2 (0); strong, >2 (1). (CHb42)

233. Tarsometatarsus, proximal view, size of cotylae: lateral bigger than medial (0); subequal (1); medial bigger than lateral (2). (CHb43)

234. Tarsometatarsus, lateral cotyla, dorsomedially expanded. In some taxa the dorsal edge of the lateral cotyla is dorsomedially deflected, expanding it slightly under the intercotylar prominence: absent (0); present (1). (CHb44)

235. Tarsometatarsus, lateral cotyla dorsal view, lateral projection: prominent (0); flattened (1). (CHb45)

236. Tarsometatarsus, medial cotyla, proximal view, pointed dorsal edge: absent (0); present (1). (CHb46)

237. Tarsometatarsus, medial cotyla, position: proximal (0); slightly dorsodistally deflected (1); strongly dorsodistally deflected (2). (CHb47)

238. Tarsometatarsus, enclosed hypotarsal canals (canales hypotarsi): absent (0); present (1). (BG141) Ordered. Note: While this character was modified by Chávez Hoffmeister (2014a) to associate state 1 with the enlarged hypotarsal canal present in Gavia, because Gavia was not used in our main phylogenetic analyses our character scores for this character follow Degrange et al. (2018).

239. Tarsometatarsus, proximal view, tendon of muscle flexor digitorum longus: groove (0); partially closed groove (1); canal (2). (CHb49)

240. Tarsometatarsus, proximal view, tendon of muscle flexor hallucis longus: groove, delimited medially by the crista lateralis flexor digitorum longus or the crista medialis flexor hallucis longus, and laterally by the crista lateralis flexor hallucis longus (0); groove, laterally open (1); poorly defined, inconspicuous or absent (2); canal (3). (CHb50) Modified: Wording for state 0 altered to be in accordance with terminology specified in Mayr (2016). Note that state 0 can be observed in Figure 8.5, Figure A10.2, A10.6, state 1 in Figure A10.1, A10.4-A10.5, A10.8, A10.9-A10.10 state 2 in Figure A10.7, A10.12-A10.15 and state 3 in Figure A10.3.

241. Tarsometatarsus, crista lateralis flexor digitorum longus: present (0); absent (1). (KF243) Modified: Definition wording altered to be in accordance with hypotarsus terminology specified by Mayr (2016).

242. Tarsometatarsus, medial hypotarsal crest, proximal view, bilobulated: absent (0); present (1). (CHb52)

243. Tarsometatarsus, proximal and plantar views, hypotarsal crests, crista lateralis flexoris digitorum longus, crista medialis flexor hallucis longus and crista lateralis flexoris hallucis longus: trisulcate, both crista lateralis flexoris digitorum longus and crista medialis flexoris hallucis longus are present (0); bisulcate, crista lateralis flexoris digitorum longus present and distinct (yet may be partially fused to the crista lateralis flexoris hallucis longus), crista lateralis flexoris hallucis longus present or vestigial, crista lateralis flexoris digitorum longus has subequal or greater plantar projection to crista lateralis flexoris hallucis longus (1); monosulcate, crista lateralis flexor digitorum longus is vestigial, indistinguishable or absent, crista lateralis flexoris hallucis longus is present or vestigial, crista lateralis flexoris hallucis longus projects further plantarly than crista lateralis flexoris digitorum longus in the instance that crests are present (2). (K158) Ordered. Modified: Wording of character definition and states changed to be in accordance with hypotarsus terminology in Mayr (2016), in order to more accurately and specify and label hypotarsus morphologies, and to reflect the range of penguin hypotarsus morphologies. It should be noted that bicanaliculate morphology as described by Mayr (2016) is classified as bisulcate (state 1) in this character for simplicity. State 0 can be seen in Figure A10.1, A10.3, state 1 in Figure 10.2, A10.4-A10.11, and state 2 in Figure A10.12-A10.15.

244. Tarsometatarsus, crista lateralis flexor hallucis longus, plantar view: enlarged and connected with crista medialis flexor digitorum longus (0); well-defined and parallel to proximodistal axis of tarsometatarsus (1); reduced, poorly defined and proximal to lateral foramen forming a diagonal ridge that over-hangs lateral foramen (2). (CHa224) Modified: Wording for definition and state 0 altered to be in accordance with terminology specified in Mayr (2016).

245. Tarsometatarsus, proximal view, plantar projection of crista lateralis flexor hallucis longus and/or crista lateralis flexor digitorum longus relative to crista medialis flexor digitorum longus: shorter (0); subequal (1). (KT203) Modified: Wording for definition altered to be in accordance with terminology specified in Mayr (2016).

246. Tarsometatarsus, collateral lateral ligament scar (impressio lig. collat. lat.): absent or inconspicuous (0); well-defined, creating a depression over the lateral surface (1); well-defined, creating a notch on the proximolateral vertex (2). (CHa219)

247. Tarsometatarsus, proximal vascular foramina, plantar view: medial foramen present, lateral foramen absent or vestigial (0); both foramina present (1); foramen vasculare proximale laterale present, foramen vasculare proximale mediale absent or vestigial (2). (K162)

248. Tarsometatarsus, lateral foramen, dorsal view: absent or vestigial (0); small (1); enlarged (2). (CHa229)

249. Tarsometatarsus, medial foramen, plantar view, opens distally to medial crest (opening for medial foramen proximalis vascularis distal to crista medialis hypotarsi): absent (0); present (1). (BG140)

250. Tarsometatarsus, medial foramen, medial view, perforating the medial hypotarsal crest (crista medialis hypotarsi/crista medialis flexor digitorum longus) perforated by opening for the medial foramen proximalis vascularis): absent (0); present (1). (B139) Modified: Wording in definition changed in accodance with hypotarsus terminology in Mayr (2016).

251. Tarsometatarsus, lateral edge, lateral view, strongly dorsoplantarly compressed: absent (0); present (1). (CHb61)

252. Tarsometatarsus, lateral edge, dorsal view: straight (0); concave (1). (A72)

253. Tarsometatarsus, dorsal view, medial margin, pronounced convexity: absent (0); present (1). (K157)

254. Tarsometatarsus, dorsal view, medial infracotylar groove: absent or poorly defined (0); present, proximal to the medial foramen, laterally open or limited by shallow tuberosities (1); present, laterally delimited by a crest or an osseus lamina that overhangs and partially occludes the medial foramen (2). (CHb64) Modified: Wording for state 1 and 2 expanded upon as per Chávez Hoffmeister (2014b).

255. Tarsometatarsus, dorsal view, lateral dorsal groove: absent or poorly defined (0); present, distal (1); present, along all the body (2). (CHb65)

256. Tarsometatarsus, dorsal view, medial dorsal groove: absent or barely perceptible (0); shallow groove (1); moderate groove (2); deep groove (3). (K159) Ordered.

257. Tarsometatarsus, dorsal, distal and plantar aspects, incisura intertrochlearis lateralis, foramen vasculare distale and canalis interosseus distalis: present, foramen vasculare distale opens proximal to the incisura intertrochlearis lateralis on the dorsal and plantar surfaces, and also the canalis interosseus distalis opens distally within the incisura intertrochlearis lateralis, separated by osseus ridges dorsally and plantarly from the foramen vasculare distale (0); present, foramen vasculare distale opens on the dorsal surface, and also distoplantarly, openings separated by a dorsally located osseus bridge, or may be connected forming a partially closed canal (1); absent (2). (K163) Ordered. Modified: Wording for state 0 and 1 altered.

258. Tarsometatarsus, intertrochlear notches, dorsal view: medial notch absent (0); medial notch deeper than lateral (1); subequal (2); lateral notch deeper than medial (3). (CHa233)

259. Tarsometatarsus, medial and lateral trochleae, dorsal view: medial trochlea shorter than lateral (0); lateral trochlea slightly shorter than medial (1); subequal (2). (CHa234)

260. Tarsometatarsus, lateral trochlea, dorsal view: laterally projected (0); straight (1); medially deflected (2). (K160)

261. Tarsometatarsus, medial trochlea, dorsal view, medial projection: strongly projected (0); moderately projected (1); planto-laterally deflected (2). (CHb71)

262. Tarsometatarsus, medial trochlea, dorsal view, presence of a neck between the trochlea and the tarsometatarsus body: absent (0); present (1). (CHb72)

263. Tarsometatarsus, lateral trochlea, distal view: dorsally aligned with intermediate trochlea (0); dorsally deflected (1); plantarly deflected (2). (KT211)

264. Tarsometatarsus, medial trochlea, distal view, strongly plantarly deflected: absent (0); present (1). (A73)

265. Tarsometatarsus, lateral trochlea, distal view, laterally deflected: absent (0); present (1). (LZ2366)

266. Tarsometatarsus, medial trochlea, plantar view, orientation of the medial and lateral carinae on the plantar-most articulation surface of trochlea metatarsi III: strongly distoproximally tapered trochlear rims (0); weakly distoproximally tapered trochlear rims (1); parallel-sided trochlear rims (2). (This study). This character relates to a distinguishing feature described by Mayr et al., (2018), differentiating tarsometatarsi of Waimanu manneringi and Muriwaimanu tuatahi .

267. Pedal digit I: small, with metatarsal I and single phalanx both present (0); metatarsal I reduced to an ossicle, claw represented by a minute ossicle or lost (1); metatarsal I absent (2). (KF245) Ordered.

Myology:

268. M. latissimus dorsi, pars cranialis, accessory slip: absent (0); present (1). (BG143)

269. M. latissimus dorsi, pars cranialis and pars caudalis: separated (0); fused (1). (BG144)

270. M. latissimus dorsi, pars metapatagialis, development: wide (0); intermediate (1); narrow (2). (BG145) Ordered.

271. M. serratus profundus, cranial fascicle: absent (0); present (1). (BG146)

272. M. deltoideus, pars propatagialis, subdivision in superficial and deep layers: undivided (0); divided (1). (BG147)

273. M. deltoideus, pars major: triangular or fan-shaped (0); strap-shaped (1). (BG148)

274. M. deltoideus, pars major, caput caudale: short (0); intermediate (1); long (2). (BG149) Ordered.

275. M. deltoideus, pars minor, origin on the clavicular articulation of the coracoid: absent (0); present (1). (BG150)

276. M. ulnometacarpalis ventralis: absent (0); present (1). (BG151)

277. M. iliotrochantericus caudalis: narrow (0); wide (1). (BG152)

278. M. iliofemoralis, origin: tendinous (0); partially tendinous and partially fleshy (1); totally fleshy (2). (BG153) Ordered.

279. M. flexor perforatus digitis IV, rami II-III: free (0); fused (1). (BG154)

280. M. flexor perforatus digitis IV, rami I-IV: free (0); fused (1). (BG155)

281. M. flexor perforatus digitis IV, insertion of middle rami: on phalanx 3 (0); on phalanx 4 (1). (BG156)

282. M. latissimus dorsi, pars caudalis, additional origin from dorsal process of vertebrae: absent (0); present (1). (BG157)

Other soft tissue:

283. Oral mucosa (bucca, tunica mucosa oris), buccal papillae group on the medial surface of the lower jaw (ramus mandibularis) at the level of the rictus: small number of rudimentary papillae with no clear arrangement (0); large, elongated papillae with no clear arrangement (1); two clear rows of short conical papillae (2). (BG158)

284. Tracheal rings: single (0); bifurcated (1). (KC219)

REFERENCES (APPENDIX 1)

Acosta Hospitaleche, C. 2005. Systematic revision of Arthrodytes Ameghino, 1905 (Aves, Spheniscidae) and its assignment to the Paraptenodytinae. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 7:404-414.

Acosta Hospitaleche, C. 2007. Revisión sistemática de Palaeospheniscus biloculata (Simpson) nov. comb. (Aves, Spheniscidae) de la Formación Gaiman (Mioceno Temprano), Chubut, Argentina. Ameghiniana, 44:417-426.

Acosta Hospitaleche, C., Castro, L., Tambussi, C. and Scasso, R.A. 2008. Palaeospheniscus patagonicus (Aves, Sphenisciformes): New discoveries from the early Miocene of Argentina. Journal of Paleontology, 82:565-575. https://doi.org/10.1666/07-014.1

Acosta Hospitaleche, C., Hagström, J., Reguero, M. and Mörs, T. 2017. Historical perspective of Otto Nordenskjöld's Antarctic penguin fossil collection and Carl Wiman's contribution. Polar Record, 53:364-375. https://doi.org/10.1017/S0032247417000249

Acosta Hospitaleche, C. and Reguero, M. 2010. First articulated skeleton of Palaeeudyptes gunnari from the late Eocene of Isla Marambio (Seymour Island), Antarctica. Antarctic Science, 22:289-298. https://doi.org/10.1017/S0954102009990769

Acosta Hospitaleche, C. and Reguero, M. 2014. Palaeeudyptes klekowskii, the best-preserved penguin skeleton from the Eocene-Oligocene of Antarctica: Taxonomic and evolutionary remarks. Geobios, 47:77-85. https://doi.org/10.1016/j.geobios.2014.03.003

Acosta Hospitaleche, C. and Tambussi, C. 2008. South American fossil penguins: A systematic update. Oryctos, 7:109-127.

Acosta Hospitaleche, C., Tambussi, C., Donato, M. and Cozzuol, M. 2007. A new Miocene penguin from Patagonia and its phylogenetic relationships. Acta Palaeontologica Polonica, 52:299-314.

Ameghino, F. 1905. Enumeración de los impennes fósiles de Patagonia y de la Isla Seymour. Anales del Museo Nacional de Buenos Aires, 3:97-167.

Ando, T. 2007. New Zealand fossil penguins: Origin, pattern, and process . Unpublished PhD Thesis University of Otago, Dunedin, New Zealand.

Bertelli, S. and Giannini, N.P. 2005. A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics, 21:209-239. https://doi.org/10.1111/j.1096-0031.2005.00065.x

Bertelli, S., Giannini, N.P. and Ksepka, D.T. 2006. Redescription and phylogenetic position of the early Miocene penguin Paraptenodytes antarcticus from Patagonia. American Museum Novitates, 3525:1-36.

Chávez Hoffmeister, M.F. 2014a. The humerus and stratigraphic range of Palaeospheniscus (Aves, Sphenisciformes). Ameghiniana, 51:159-173. https://doi.org/10.5710/AMEGH.14.02.2014.637

Chávez Hoffmeister, M.F. 2014b. Phylogenetic characters in the humerus and tarsometatarsus of penguins. Polish Polar Research, 35:469-496. https://doi.org/10.2478/popore-2014-0025

Chávez Hoffmeister, M.F., Carrillo Briceño, J.D. and Nielsen, S.N. 2014. The evolution of seabirds in the Humboldt Current: New clues from the Pliocene of central Chile. PloS ONE, 9:e90043 (90041-90012). https://doi.org/10.1371/journal.pone.0090043

Chávez, M.F. 2007. Sobre la presencia de Paraptenodytes y Palaeospheniscus (Aves: Sphenisciformes) en la Formación Bahía Inglesa, Chile. Revista Chilena de Historia Natural, 80:255-259. https://doi.org/10.4067/S0716-078X2007000200010

Clarke, J.A., Ksepka, D.T., Salas-Gismondi, R., Altamirano, A.J., Shawkey, M.D., D'Alba, L., Vinther, J., DeVries, T.J. and Baby, P. 2010. Fossil evidence for evolution of the shape and color of penguin feathers. Science, 330:954-957. https://doi.org/10.1126/science.1193604

Clarke, J.A., Ksepka, D.T., Stucchie, M., Urbina, M., Giannini, N., Bertelli, S., Narvez, Y. and Boyd, C.A. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Sciences of the United States of America, 104:11545-11550. https://doi.org/10.1073/pnas.0611099104

Degrange, F.J., Ksepka, D.T. and Tambussi, C.P. 2018. Redescription of the oldest crown clade penguin: Cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus . Journal of Vertebrate Paleontology, 38:e1445636 (1445631-1445625). https://doi.org/10.1080/02724634.2018.1445636

Fordyce, R.E. and Thomas, D.B. 2011. Kaiika maxwelli, a new early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics, 54:43-51. https://doi.org/10.1080/00288306.2011.536521

Gavryushkina, A., Heath, T.A., Ksepka, D.T., Stadler, T., Welch, D. and Drummond, A.J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology, 66:57-73. https://doi.org/10.1093/sysbio/syw060

Giannini, N.P. and Bertilli, S. 2004. Phylogeny of extant penguins based on integumentary and breeding characters. The Auk, 121:422-434. https://doi.org/10.2307/4090406

Göhlich, U.B. 2007. The oldest fossil record of the extant penguin genus Spheniscus - A new species from the Miocene of Peru. Acta Paleontologica Polonica, 52:285-298

Huxley, T.H. 1859. On a fossil bird and a fossil cetacean from New Zealand. Quarterly Journal of the Geological Society of London, 15:670-677. https://doi.org/10.1144/GSL.JGS.1859.015.01-02.73

Jadwiszczak, P. 2006a. Eocene penguins of Seymour Island, Antarctica: Taxonomy. Polish Polar Research, 27:3-62.

Jadwiszczak, P. 2006b. Eocene penguins of Seymour Island, Antarctica: The earliest record, taxonomic problems and some evolutionary considerations. Polish Polar Research, 27:287-302.

Jadwiszczak, P. 2010. New data on the appendicular skeleton and diversity of Eocene Antarctic penguins, p. 45-51. In Nowakowski, D. (ed.) Morphology and Systematics of Fossil Vertebrates . DN Publishers, Wroclaw. https://doi.org/10.13140/2.1.4673.1204

Jadwiszczak, P. 2013. Taxonomic diversity of Eocene Antarctic penguins: A changing picture, p. 129-138. In Hambrey, M.J., Barker, P.F., Barrett, P.J.B., Davies, V. B., Smellie, J.L. and Tranter, M. (eds.), Antarctic Palaeoenvironments and Earth-Surface Processes . The Geological Society, London. https://doi.org/10.1144/SP381.7

Jadwiszczak, P. 2015. Another look at tarsometatarsi of early penguins. Polish Polar Research, 36:343-354. https://doi.org/10.1515/popore-2015-0024

Jadwiszczak, P., Hospitaleche, C.A. and Reguero, M. 2013. Redescription of Crossvallia unienwillia : The only Paleocene Antarctic penguin. Ameghiniana, 50:545-553. https://doi.org/10.5710/AMGH.09.10.2013.1058

Jadwiszczak, P. and Mörs, T. 2019. First partial skeleton of Delphinornis larseni Wiman, 1905, a slender-footed penguin from the Eocene of Antarctic Peninsula. Palaeontologia Electronica 22.2.32A 1-31. https://doi.org/10.26879/933
palaeo-electronica.org/content/2019/2574-skeleton-of-an-eocene-penguin

Jenkins, R.J.F. 1974. A new giant penguin from the Eocene of Australia. Paleontology, 17:291-310.

Ksepka, D.T. 2007. Phylogeny, histology and functional morphology of fossil penguins (Sphenisciformes) . Unpublished PhD Thesis, Columbia University, New York, USA.

Ksepka, D.T. and Ando, T. 2011. Penguins past, present, and future: Trends in the evolution of the Sphenisciformes, p. 155-186. In Dyke, G. and Kaiser, G.W. (eds.), Living Dinosaurs: The Evolutionary History of Modern Birds . John-Wiley & Sons Ltd, Hoboken, New Jersey. https://doi.org/10.1002/9781119990475.ch6

Ksepka, D.T., Bertelli, S. and Giannini, N.P. 2006. The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics, 22:412-441. https://doi.org/10.1111/j.1096-0031.2006.00116.x

Ksepka, D.T. and Clarke, J.A. 2010. The basal penguin (Aves: Sphenisciformes) Perudyptes devriesi and a phylogenetic evaluation of the penguin fossil record. Bulletin of the American Museum of Natural History, 337:1-77. https://doi.org/10.1206/653.1

Ksepka, D.T., Clarke, J.A., DeVries, T.J. and Urbina, M. 2008. Osteology of Icadyptes salasi, a giant penguin from the Eocene of Peru. Journal of Anatomy, 213:131-147. https://doi.org/10.1111/j.1469-7580.2008.00927.x

Ksepka, D.T., Fordyce, R.E., Ando, T. and Jones, C.M. 2012. New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. Journal of Vertebrate Paleontology, 32:235-254. https://doi.org/10.1080/02724634.2012.652051

Ksepka, D.T. and Thomas, D.B. 2012. Multiple Cenozoic invasions of Africa by penguins (Aves, Sphenisciformes). Proceedings of the Royal Society of London B: Biological Sciences, 279:1027-1032. https://doi.org/10.1098/rspb.2011.1592

Livezey, B.C. and Zusi, R.L. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society, 149:1-95. https://doi.org/10.1111/j.1096-3642.2006.00293.x

Marples, B.J. 1952. Early Tertiary penguins of New Zealand. New Zealand Geological Survey, Palaeontological Bulletin, 20:1-66.

Marples, B.J. 1953. Fossil penguins from the mid-Tertiary of Seymour Island. Falkland Islands Dependence Survey Scientific Reports, 5:1-15.

Mayr, G. 2005. Tertiary plotopterids (Aves, Plotopteridae) and a novel hypothesis on the phylogenetic relationships of penguins (Spheniscidae). Journal of Zoological Systematics and Evolutionary Research, 43:61-71. https://doi.org/10.1111/j.1439-0469.2004.00291.x

Mayr, G. 2016. Variations in the hypotarsus morphology of birds and their evolutionary significance. Acta Zoologica, 97:196-210. https://doi.org/10.1111/azo.12117

Mayr, G., De Pietri, V.L., Love, L., Mannering, A.A. and Scofield, R.P. 2018. A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand. Journal of Vertebrate Paleontology, 37:e1398169 (1398161-1398119). https://doi.org/10.1080/02724634.2017.1398169

Mayr, G., De Pietri, V.L., Love, L., Mannering, A. and Scofield, R.P. 2019. Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand. Alcheringa: An Australasian Journal of Palaeontology . https://doi.org/10.1080/03115518.2019.1641619

Mayr, G., De Pietri, V.L. and Scofield, R.P. 2017a. A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world’s oldest penguins. The Science of Nature, 104:1-6. https://doi.org/10.1007/s00114-017-1441-0

Mayr, G., Scofield, R.P., De Pietri, V.L. and Tennyson, A.J. 2017b. A Paleocene penguin from New Zealand substantiates multiple origins of gigantism in fossil Sphenisciformes. Nature Communications, 8:1-8. https://doi.org/10.1038/A41467-017-01959-6

Myrcha, A., Jadwiszczak, P., Tambussi, C.P., Noriega, J.I., Gaździcki, A., Tatur, A. and Del Valle, R. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research, 23:5-46.

Myrcha, A., Tatur, A. and Del Valle, R. 1990. A new species of fossil penguin from Seymour Island, West Antarctica. Alcheringa: An Australasian Journal of Palaeontology, 14:195-205. https://doi.org/10.1080/03115519008619055

O'Hara, R.J. 1989. Systematics and the study of natural history, with an estimate of the phylogeny of the living penguins (Aves: Spheniscidae) . Unpublished PhD Thesis, Harvard University, Cambridge, Massachusetts, USA.

Park, T. 2014. Redescription of the Miocene penguin Pseudaptenodytes macraei Simpson (Aves: Sphenisciformes) and redefinition of the taxonomic status of ?Pseudaptenodytes minor Simpson. Alcheringa: An Australasian Journal of Palaeontology, 38:450-454. https://doi.org/10.1080/03115518.2014.906177

Park, T. and Fitzgerald, E.M.G. 2012. A review of Australian fossil penguins (Aves: Sphenisciformes). Memoirs of Museum Victoria, 69:309-325. https://doi.org/10.24199/j.mmv.2012.69.06

Park, T., Fitzgerald, E.M.G., Gallagher, S.J., Tomkins, E. and Allan, T. 2016. New Miocene fossils and the history of penguins in Australia. PloS ONE, 11:e0153915 (0153911-0153921). https://doi.org/10.1371/journal.pone.0153915

Parras, A., Dix, G.R. and Griffin, M. 2012. Sr-isotope chronostratigraphy of Paleogene-Neogene marine deposits: Austral Basin, southern Patagonia (Argentina). Journal of South American Earth Sciences, 37:122-135. https://doi.org/10.1016/j.jsames.2012.02.007

Parras, A., Griffin, M., Feldmann, R., Casadío, S., Schweitzer, C. and Marenssi, S. 2008. Correlation of marine beds based on Sr-and Ar-date determinations and faunal affinities across the Paleogene/Neogene boundary in southern Patagonia, Argentina. Journal of South American Earth Sciences, 26:204-216. https://doi.org/10.1016/j.jsames.2008.03.006

Raine, J.I., Beu, A.G., Boyes, A.F., Campbell, H., Cooper, R.A., Crampton, J.S., Crundwell, M.P., Hollis, C.J. and Morgans, H. 2015. New Zealand Geological Timescale: NTGT2015/1. New Zealand Journal of Geology and Geophysics, 58:398-403. https://doi.org/10.1080/00288306.2015.1086391

Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T. and Marenssi, S. 2013. Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and its Intercontinental Affinities . Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5491-1

Roberts, D.L., Matthews, T., Herries, A.I., Boulter, C., Scott, L., Dondo, C., Mtembi, P., Browning, C., Smith, R.M. and Haarhoff, P. 2011. Regional and global context of the Late Cenozoic Langebaanweg (LBW) palaeontological site: West Coast of South Africa. Earth-Science Reviews, 106:191-214. https://doi.org/10.1016/j.earscirev.2011.02.002

Simpson, G.G. 1946. Fossil penguins. Bulletin of the American Museum of Natural History, 87:7-99.

Simpson, G.G. 1957. Australian fossil penguins, with remarks on penguin evolution and distribution. Records of the South Australian Museum, 13:51-70.

Simpson, G.G. 1970. Miocene penguins from Victoria, Australia, and Chubut, Argentina. Memoirs of the National Museum of Victoria, 31:17-24.

Simpson, G.G. 1971a. Fossil penguin from the late Cenozoic of South Africa. Science, 171:1144-1145. https://doi.org/10.1126/science.171.3976.1144

Simpson, G.G. 1971b. A review of the pre-Pliocene penguins of New Zealand. Bulletin of the American Museum of Natural History, 144:323-378.

Simpson, G.G. 1972. Conspectus of Patagonian fossil penguins. American Museum Novitates, 2488:1-38.

Simpson, G.G. 1979. Tertiary penguins from the Duinefontein site, Cape Province, South Africa. Annals of the South African Museum Annale Van Die Suid-Afrikaanse Museum, 79:1-7.

Simpson, G.G. 1981. Notes on some fossil penguins, including a new genus from Patagonia. Ameghiniana, 18:266-272.

Stanley, S.E. and Harrison, R.G. 1999. Cytochrome b evolution in birds and mammals: An evaluation of the avian constraint hypothesis. Molecular Biology and Evolution, 16:1575-1585. https://doi.org/10.1093/oxfordjournals.molbev.a026070

Tambussi, C.P., Reguero, M.A., Marenssi, S.A. and Santillana, S.N. 2005. Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the late Paleocene of Antarctica. Geobios, 38:667-675. https://doi.org/10.1016/j.geobios.2004.02.003

Triche, N.E. 2007. Systematics, biogeography, and evolutionary history of fossil and extant penguins (Aves: Sphenisciformes). Unpublished PhD Thesis, University of Texas, Austin, Texas, USA.

Walsh, S.A. and Suárez, M.E. 2006. New penguin remains from the Pliocene of northern Chile. Historical Biology, 18:119-130. https://doi.org/10.1080/08912960600640796

Wiens, J.J. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 52:528-538. https://doi.org/10.1080/10635150390218330

Wiens, J.J. and Reeder, T.W. 1995. Combining data sets with different numbers of taxa for phylogenetic analysis. Systematic Biology, 44:548-558. https://doi.org/10.2307/2413660

Wiman, C. 1905. Vorläufige Mitteilung über die alttertiären Vertebraten der Seymourinsel. Bulletin of the Geological Institute of Upsala, 6:247-253.

 

TABLE A1. GenBank accession numbers for molecular sequences used in phylogenetic analyses.

Taxon 12S rDNA 16S rDNA COI Cytochrome b RAG-1
A. forsteri DQ137187 DQ137147 DQ137185 DQ137225 DQ137246
A. patagonicus AY139221 DQ137148 DQ137186 AY138623 DQ137247
D. capense X82517 AF076046
D. exulans DQ137205 DQ137165 DQ137168 DQ137208 DQ137229
E. chrysocome AY139630 DQ525796 DQ525776
E. chrysolophus DQ137197 DQ137157 DQ137171 AF076052 DQ137223
E. filholi DQ525741 DQ525781 DQ525761
E. moseleyi DQ525746 DQ525786 DQ525766
E. pachyrhynchus U88007, X82522 DQ137152 DQ137170 DQ137210 DQ137231
E. robustus DQ137193 DQ137153 DQ137176 DQ137126 DQ137237
E. schlegeli DQ137196 DQ137156 DQ137175 DQ137215 DQ137236
E. sclateri DQ137194 DQ137154 DQ137169 DQ137309 DQ137230
E. minor NC004538 DQ137164 DQ137174 NC 004538 DQ137235
G. immer AF173577 DQ137166 DQ137167 DQ137207 DQ137288
G. stellata AF173587 AY293618 AY666477 AF158250
M. giganteus X82523 AF076060
M. antipodes DQ137198 DQ137158 DQ137184 DQ137224 DQ1372245
O. oceanicus DQ433048 AF076062
O. leucorhoa AY666284 AF0706064
P. desolata AF076068
P. urinatrix X82518 AF076076 DQ881818
P. immutabilis DQ433933 PIU48949
P. palpebrata U48943 DQ881822
P. aequinoctialis U74350
P. brevirostris NC007174 NC007174 NC007174 NC007174
P. gravis AF175572 AF173752 DQ434014 U74354  
P. adeliae AF173573 DQ137149 DQ137183 DQ137223 DQ137224
P. antarctica DQ137190 DQ137150 DQ137181 AF076089 DQ137242
P. papua DQ137191 DQ137151 DQ137182 AF076090 DQ137243
S. demersus DQ137199 DQ137159 DQ137177 DQ137217 DQ137238
S. humboldti DQ137201 DQ137161 DQ137180 DQ137220 DQ137241
S. magellanicus DQ137200 DQ137160 DQ137178 DQ137218 DQ137239
S. mendiculus DQ137202 DQ137162 DQ137179 DQ137219 DQ137240
T. melanophrys AY158677 AY158677 NC_007172 U48955 AY158677
P. rubricauda AF158251

 

 

TABLE A2. Comparative specimens examined and associated changes to characters of the phylogenetic data matrix.

Taxon Specimens Coding changes (with abbreviated reference to character number in brackets—see Character List)
Anthropodyptes gilli NMV P 17167 (Park and Fitzgerald, 2012) 1 (BG121), 2 (BG122), 1 (CHa157), 1 (K133), 1 (CHb20), 2 (CHa176), 1 (CHa177), 0/1 (CHb31), 0 (BG126), 0 (BG128), 0 (K142), 2 (CHb37), 3 (BG127), 0 (CHb39), 2 (CHb3), 2 (C132), 0 (K128), 1 (CHb7), 1 (BG125), 1 (K134), 0/1 (K136), 0 (C143), 1 (BG128), 1 (A34), 1 (K141), 1 (K143)
Anthropornis grandis IB/P/B-0483 (Myrcha et al., 2002), IB/P/B-0064, IB/P/B-0443, IB/P/B-0454, IB/P/B-0179, IB/P/B-0590 (Jadwiszczak, 2006a), specimens used within Jadwiszczak (2013) 0 (BG120), 1 (A22), 1 (CHa157), 0 (K135), 0 (KT153), 1 (CHb17), 1/2 (BG125), ? (C144), ? (CHa176), ? (CHa177), ? (BG126), ? (K142), ? (K143), ? (K141), 1 (K158), 0 (KT203), 0 (K144), 0 (CL217), 0 (K124), 0/1 (This study 266), 1 (CHb50), 0 (CHb47)
Anthropornis nordenskjoeldi IB/P/B-0070 (Myrcha et al., 1990; Myrcha et al., 2002), IB/P/B-0119, IB/P/B-0150, IB/P/B-0701, IB/P/B-0250b, IB/P/B-0501 (Jadwiszczak, 2006a), NHMUK A2013, USNM 402486 (Ksepka et al., 2006), NHMUK A. 3361, NHMUK A. 3348-3354, NHMUK A. 3356 (Marples, 1953), MLP 95-I-10-142 (Jadwiszczak, 2015), NRM-PZ A.45 (Wiman, 1905; Acosta Hospitaleche et al., 2017), specimens used within Jadwiszczak (2013), MLP 84-II-1-7 (cast) 0 (CL217), 1 (A22), 0 (BG120), 0 (K124), 0/1 (CHa157), 1 (CHb7), 0 (KT153), 2 (CL220), 1 (K141), 1 (K158), 1 (CHb50), 0 (KT203), 2 (This study 203), 0 (K144), 1 (K144/CHa188), 0 (K145), 1 (KC187), 1 (BG135), 0 (BG136), 1 (C169), 0 (CHb31), 2 (BG128), 1 (KC166), 0 (KF239), 0 (This study 266), 0 (CHb49), 0 (CHb47), 0/1 (C132)
Aphrodroma brevirostris figure 1: Mayr (2016) 1 (K158), 0 (A72), 0 (This study 266), 0 (KT203), 0 (CHb50), 1 (CHb49), 1 (BG141) 2 (CHb47), 0 (CHb65), 0 (K163), 0 (CHb71), 0 (KT211), 1 (CHb46), 0 (CHb45), 1 (CHb44), 0 (CHb42), 1 (BG127), 1 (CHb37), 3 (K141), 3 (BG126), 0 (CL220), 0 (CHb20), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Aptenodytes forsteri NHMUK 1905.12.30.419 (Jadwiszczak, 2015), NMV B 18320, CM AV17360 2 (K141), 2 (CHb50), 2 (K158), 0 (A72), 1 (This study 266), 0 (CHb49), 0 (BG141), 0 (CHb47), 0 (CHb64), 2 (CHb65), 2 (K163), 1 (CHb71), 0 (CHb72), 0 (KT211), 0/1 (LZ2366), 0 (CHb46), 1 (CHb45), 0 (CHb44), 2 (CHb43), 0 (CHb42), 1 (KF239), 3 (BG127), 2 (CHb37), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Aptenodytes patagonicus CM 1229, CM 1225, CM 1241, CM 1243, CM not registered, CM not registered, CM not registered, CM not registered 1 (This study 266), 1 (KF239)
Archaeospheniscus lopdellorum OM C.47.21 (Marples, 1952; Simpson, 1971b), OM GL428 ? (K158), 0/1 (This study 266), 2 (This study 203), 1 (M246), 0 (KF239), 1 (CHb3), 2 (C132), ? (K137)
Archaeospheniscus lowei OM C.47.20 (Marples, 1952; Simpson, 1971b), OM GL407 2 (K141), 2 (This study 203), 1 (M246), 1 (M247), 0 (KF239), 1 (CHb3), 3 (CL220)
Ardenna gravis   0 (A72), 1 (K158), 0 (This study 266), 3 (CHb50), 2 (CHb49), 1 (BG141), 2 (CHb47), 0 (CHb61), 0 (CHb64), 0 (CHb65), 0 (K163), 0 (CHb71), 0 (CHb72), 0 (LZ2366), 0 (CHb46), 0 (CHb45), 1 (CHb44), 1 (CHb43), 0 (CHb42), 3 (K141), 3 (BG126), 0 (BG127), 0 (CHb20), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Ardenna grisea   0 (This study 266)
Arthrodytes grandis MLP M-606, MLP M-607, MLP M-608 (Acosta Hospitaleche, 2005) 2 (CL223), 0 (KF235), 1 (KC137), 0 (K122), 1 (K124)
Burnside ‘Palaeeudyptes’ OM C48.73-81 (Marples, 1952; Simpson, 1971b; Ksepka, 2007) 0 (CHb47), 1 (M247), 1 (K141)
Chauna torquata CM AV21208  
Crossvallia unienwillia MLP 00-I-10-1 (Tambussi et al., 2005; Jadwiszczak et al., 2013) 2 (K141), 2 (K139), 1 (CL222), 1 (CL220)
?Crossvallia waiparensis CM 2018.23.9, CM 2016.158.2, CM 2016.158.3 Coded in entirety, see NEXUS file
Cygnus olor CM AV25436, CM AV23143  
Daption capense   0 (A72), 1 (K158), 1 (This study 266), 0 (KT203), 0 (CHb50), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 3 (BG126), 0 (CL220), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Delphinornis arctowskii IB/P/B-0484 (Myrcha et al., 2002), IB/P/B-0115 (Jadwiszczak, 2006a) 1 (K159), 1 (K158), 1 (CHb50), 3 (CHa224), 1 (C169), 1 (This study 266), 1 (CHa229), 1 (K163), 1 (LZ2366), 2 (CHa233), 2 (CHa234)
Delphinornis gracilis IB/P/B-0279a (Myrcha et al., 2002), IB/P/B-0130, IB/P/B-0408 (Jadwiszczak, 2006a) 1 (K158), 2 (CHb50), 1 (K160), 0 (This study 266), 1/2 (K163), 0 (K160), 0/1 (LZ2366), 2/3 (CHa233)
Delphinornis larseni IB/P/B-0062 (Myrcha et al., 2002), IB/P/B-0444, IB/P/B-0446, IB/P/B-0090, IB/P/B-0337 (Jadwiszczak, 2006a), IB/P/B-0440 (Jadwiszczak, 2006a; 2010), NRM-PZ A.21 (holotype) (Wiman, 1905; Acosta Hospitaleche et al., 2017), MLP 93-X-1-146, MLP 93-X-1-161 (Reguero et al., 2013), NRM-PZ A.994, IB/P/B-0547 (Jadwiszczak and Mörs, 2019) 1 (CHb7), 0 (K135), 1 (K159), 2 (K144), 1 (K144/CHa188), 1 (BG121), 2 (BG122), 1 (CHb3), 0 (C132), 1 (CHa157), 0 (K128), 0 (CHb8), 2 (CL222), 1 (K129), 2 (BG123), 0 (BG124), 1 (CHb16), 2 (K133), 1 (CHb20), 0 (K136), 0 (K137), 0 (CHa176), 0 (CHa177), 0 (BG126), 2 (BG128), 3 (BG127), 0 (CHb39), 1 (M247), 1 (K158), 2 (This study 203), 1 (KC166), 0 (KF139), 0 (K145), 1 (C157), 1 (KC175), 1 (C169), 0/1 (This study 266), 1 (BG139), 0 (BG140), 1 (CHa229), 0 (K163), 0/1 (K160), 1 (LZ2366), 1 (OH16), 1 (CHb47), 0 (CHb50)
Diomedea exulans CM AV7000, CM AV3351 0 (K158), 1 (This study 266), 0 (CHb50), 1 (CHb49), 1 (BG141), 1 (CHb50)
Duntroonornis parvus OM C.47.31 (Marples, 1952; Simpson, 1971b) 2 (K158), 0 (KF243), 2 (K158), 1 (K162), 0 (K157), 0 (K159), 2 (K160)
Eretiscus tonnii MLP 81-VI-26-1, MLP 69-III-29-25 (Simpson, 1981) 1/2 (This study 266), 1 (K158), ? (CHb45), 1 (M247), 1 (K141), 0 (CHa177), 1 (CHa157), 0 (CHb16), ? (K136)
Eudyptes calauina SGO-PV 21451, SGO-PV 21449, SGO-PV 21447, SGO-PV 21488, SGO-PV 21487, SGO-PV 21444 (Chávez Hoffmeister et al., 2014) 2 (BG122), 2 (CHb3), 1 (CHb7), 2 (CHb8), 1 (CHb16), 2 (CHb17), 2 (K133), 2 (CHb20), 1 (CHb31), 2 (CHb37), 3 (BG127), ? (CHb39), 0 (BG141), 1 (CHb43), 0 (CHb44), 1 (CHb45), 1 (CHb46), 1 (CHb47), 0 (CHb49), 2 (CHb50), 1 (CHb64), 2 (CHb65), 1 (CHb71), 0 (CHb72), 1 (LZ2366), 1 (This study 266), 0 (A72), 0 (CHb61), 0 (CHb42), 0 (CHb39), 3 (BG127), 2 (CHb37), 1 (CHb31), 2 (CHb20), 2 (K133), 2 (CHb17), 1 (CHb16), 1/2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Eudyptes chrysocome   0 (This study 266), 0/1 (CHb46), 1 (CHb45)
Eudyptes chrysolophus CM 1994-191 0 (A72), 2 (K158), 0 (This study 266), 2 (CHb50), 0 (CHb49), 0 (BG141), 1 (CHb47), 1 (CHb64), 2 (CHb65), 2 (K163), 1 (CHb71), 0 (CHb72), 0 (KT211), 1 (LZ2366), 0 (CHb46), 1 (CHb45), 0 (CHb44), 3 (BG127), 2 (CHb37), 2 (K141), 0 BG126), 3 (CL220), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Eudyptes filholi   0 (A72), 1 (CHa229), 2 (K158), 0 (This study 266), 2 (CHb50), 0 (CHb49), 0 (BG141), 2 (CHb65), 2 (K163), 0 (CHb72), 0 (KT211), 1 (CHb45), 3 (BG127), 2 (CHb37), 2 (K141), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Eudyptes moseleyi   0 (A72), 1 (CHa229), 2 (K158), 0 (This study 266), 2 (CHb50), 0 (BG141), 1 (CHb64), 2 (CHb65), 2 (K163), 1 (CHb71), 0 (CHb72), 0 (KT211), 1 (LZ2366), 0/1 (CHb46), 1 (CHb45), 0 (CHb44), 3 (BG127), 2 (CHb37), 2 (K141), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122), 0 (CHb49)
Eudyptes pachyrhynchus OM 309 (Triche, 2007) 2 (CHb50), 2 (K158), 0 (A72), 0 (This study 266), 0 (CHb49), 0 (BG141), 2 (CHb65), 2 (K163), 0 (CHb72), 0 (KT211), 1 (CHb45), 3 (BG127), 2 (CHb37), 2 (K141), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Eudyptes robustus   0 (A72), 2 (K158), 0 (This study 266), 2 (CHb50), 0 (CHb49), 0 (BG141), 2 (CHb65), 2 (K163), 0 (CHb72), 1 (CHb45), 2 (CHb37), 2 (K141), 0 (BG126), 3 (BG127), 3 (CL220), 2 (CHb20), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Eudyptes schlegeli   0 (BG141), 1 (CHb45), 0 (BG126), 3 (CL220), 2 (BG122)
Eudyptes sclateri OM AV7861 (Triche, 2007) 2 (K158), 0 (A72), 0 (This study 266), 2 (CHb50), 0 (CHb49), 0 (BG141), 2 (CHb65), 2 (K163), 0 (CHb72), 1 (CHb45), 3 (BG127), 2 (CHb37), 2 (K141), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Eudyptula minor FUR 019, FUR 208 1 (LZ2366), 0 (This study 266), 0/1 (CHb39), 2 (K158), 2 (CHb50)
Gavia immer USNM 502462 0 (K158), 3 (CHb50)
Gavia stellata CM AV10284 0 (K158)
Hakataramea penguin OU 21977 (Ando, 2007) 1 (M247), 2 (C132)
Hydrobates leucorhous USNM 614217 0 (K158), 2 (This study 266), 0 (A72), 0 (K158), 3 (CHb50), 2 (CHb49), 1 (BG141), 1 (CHb47), 0 (CHb61), 0 (CHb64), 0 (CHb65), 0 (K163), 1 (CHb71), 0 (CHb72), 0 (LZ2366), 0 (CHb46), 0 (CHb45), 0 (CHb44), 1 (CHb43), 0 (CHb42), 0 (BG127), 1 (CHb37), 2 (BG126), 0 (CL220), 0 (K134), 0 (CHb20), 2 (K133), 0 (CHb17), 0 (CHb8), 0 (CHb3), 0 (BG122)
Hydrobates tethys   2 (This study 266)
Icadyptes salasi MUSM 897 (Ksepka et al., 2008) 2 (This study 203), 0 (K141), 2/3 (CL220)
Inguza predemersus ISAM L6510, ISAM PQL28195, ISAM PQL23012, ISAM PQL23003, ISAM PQL28254, ISAM PQL28251 (Ksepka and Thomas, 2012) 2 (K141), 2 (BG122), 2 (CHb3), 2 (C132), 1 (CHa157), 2 (CHb8), 1/2 (K127), 2 (CL222), 1 (CHb16), 1 (K133), 1/2 (CHb20), 3 (CL220), 1 (C143), 1/2 (CHa176), 0 (CHa177), 1 (CHb31), 2 (BG128), 2 (K142), 2 (CHb37), 3 (BG127), 0 (CHb39), 1 (KF239), 3 (K144/CHa188), 1 (M246), 0 (K145), 2 (This study 203), 1 (CHb47), 0 (CHb64), 1 (CHa229), 1 (M247), 2 (CHb17), 1/2 (K134), 1 (A34), 1 (CHb43), 0 (CHb44), 1 (CHb45), 1 (CHb46), 0 (CHb49), 2 (K158), 2 (CHa219), 1 (CHb61), 0 (A72), 2, (CHb65), 0 (This study 266), 1 (LZ2366), 1 (KT211), 0 (CHb72), 0 (CHb71), 2 (K159), 3 (CHa233), 1 (K160)
Inkayacu paracasensis MUSM 1444 (Clarke et al., 2010) 1 (KF236), 1 (K141), 2 (This study 203), 2 (This study 266), 1 (K158), 1 (CHb47), 0/1 (K141), 1 (CHb3), 2/3 (CHa233), 1 (CL220), 0 (CHb50)
Kaiika maxwelli OU 22402 (Fordyce and Thomas, 2011) 1/2 (BG125), 0 (A34), 2 (BG128), 1 (K135), 1 (CL222)
Kairuku grebneffi OU 22094, OU 22065 (Ksepka et al., 2012) 2 (This study 203), 1 (This study 266), 1 (K158), 0/1 (CHb47), 0/1 (K141), 2/3 (CL220), 1 (C132)
Kairuku waitaki OU 12652 (Ksepka et al., 2012) 1 (K158), 1 (This study 266), 1 (CHb47), 1 (C132)
Korora oliveri OM C.50.63 (Marples, 1952; Simpson, 1971b) Coded in entirety, see NEXUS file
Kumimanu biceae NMNZ S.45877 (Mayr et al., 2017b) 1 (CHb20), 0 (CHb16), 1 (KT153), 1 (CL222)
Leptoptilos sp. CM AV37491  
Macronectes giganteus CM AV20407, CM AV14405 0 (A72), 1 (K158), 1 (This study 266), 0 (KT203), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 3 (BG126), 0 (CL220), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Madrynornis mirandus MEF-PV 100 (Acosta Hospitaleche et al., 2007) 1/2 (K141), 1 (This study 266), 2 (This study 203), 1 (M247)
Marplesornis novaezealandiae CM AV 16527 2 (This study 203), 1/3 (K144/CHa188), 1 (M246), 1 (M247), 2 (K144), 0 (KF239), 2 (K141), 0 (BG126), 3 (CL220), 3 (K133), 1 (CHb16), 0 (K135), 2 (CL222), 2 (CHb3), 2 (BG122)
Marambiornis exilis IB/P/B-0490 (Myrcha et al., 2002), IB/P/B-0434, IB/P/B-0406 (Jadwiszczak, 2006a) 0 (This study 266), 0 (CHb50), 1 (LZ2366), 3 (CHa233), 2 (CHa234)
Megadyptes antipodes   2 (CHa233), 0/1 (This study 266)
Mesetaornis polaris IB/P/B-0278 (Myrcha et al., 2002), IB/P/B-0215, IB/P/B-0207 (Jadwiszczak, 2006a) 1 (AH38), 0 (This study 266), 1 (CHa229), 1 (K158), 1 (K163), 3 (CHa233), 2 (CHa234)
Muriwaimanu tuatahi CM zfa 34, CM 2008.145.3, CM 2009.99.1, OU 12651, CM 2010.108.3 1 (This study 203), 1 (K144/CHa188), 2 (K127), 2 (This study 266), 0 (CHa234), 1 (BG138), 0 (KF239), 3 (BG127), 2 (BG128), 1 (CL220), 0 (CHb16), 1 (KT153), 1 (K135), 1 (CL222), 0 (KF236), 1 (KC142), 0/1 (K124), 0/1 (CHb46), 0 (CHa157), ? (C143)
Notodyptes wimani IB/P/B-0491 (Myrcha et al., 2002), IB/P/B-0176, IB/P/B-0641, IB/P/B-0110 (Jadwiszczak, 2006a), IB/P/B-0284, NHMUK A3331 1 (BG121), 2 (BG122), 1 (CHa157), 1 (CHb7), 0 (CHb8), 0 (K127), 2 (CL222), 1 (K129), 2 (BG123), 0 (BG124), 1 (CHb16), 2 (BG125), 2 (K133), 1 (CHb20), 1 (CL219), 0 (K136), 0 (CHa177), 1 (CHb31), 0 (BG126), 1/2 (BG128), 1 (K143), 0 (BG136), 1 (This study 266), 0 (CL221), 1 (K141), 2/3 (CL220), 1/2 (C132), 1 (CHb17)
Nucleornis insolitus ISAM-PQ-MBD4, ISAM-PQ-MBD3 (Simpson, 1979) 2 (K158), 0 (KF243), 2 (CHb65), 0 (A72), 0 (CHa229), 3 (CHa224), 0 (CHb49), 1 (CHb43), 1/2 (CHb42), 1 (CHa219), ? (KT211), 2 (CHb50), 1/2 (CHb47), 0 (CHb44), 1 (CHb45), 0 (CHb46), 0/1 (CHb61), 0 (CHb64), 2 (K159), 3 (CHa233), 1 (LZ2366)
Oceanites oceanicus   0 (A72), 1 (K158), 2 (This study 266), 0 (KT203), 3 (CHb50), 1 (BG141), 0 (K163), 0 (CHb45), 1 (BG127), 3 (K141), 2 (BG126), 0 (CL220), 2 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Pachydyptes ponderosus NMNZ OR. 1450 1 (K141), 2/3 (CL220)
Pachydyptes simpsoni P.14157, P.14158 (Jenkins, 1974) 1 (BG121), 2 (BG122), 2 (K133), 1 (CHb20), 0 (K134), 2 (CL220), 1 (CHa177), 0 (KF239)
Pachyptila desolata   0 (A72), 1 (K158), 0 (This study 266), 3 (CHb50), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 2 (BG126), 0 (CL220), 0 (K134), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Palaeeudyptes antarcticus NHMUK A.1084 (Huxley, 1859; Simpson, 1971b), OU 22167 (Ksepka et al., 2012) 1 (K158), 1 (K160), 0 (This study 266), 2 (CHa219)
Palaeeudyptes gunnari IB/P/B-0072 (Myrcha et al., 1990; Myrcha et al., 2002), IB/P/B-0306, IB/P/B-0151, IB/P/B-05896, IB/P/B-0654, IB/P/B-0103, IB/P/B-0083, IB/P/B-0455, IB/P/B-0692 (Jadwiszczak, 2006a), MLP 96-I-6-13 (Acosta Hospitaleche and Reguero, 2010), NRM-PZ A.7 (holotype) (Wiman, 1905; Chávez Hoffmeister, 2014b; Acosta Hospitaleche et al., 2017), specimens used within Jadwiszczak (2013) 0 (BG120), 1 (K158), 0 (KT203), 0/1 (K160), 2 (This study 203), 0 (CL217), 0 (K124), 0/1 (K144), 2 (K144/CHa188), 0 (BG136), 1 (C169), 0 (This study 266), 1 (C132), 2/3 (CL220)
Palaeeudyptes klekowskii IB/P/B-0065 (Myrcha et al., 1990), MLP 11-II-20-07 (Acosta Hospitaleche and Reguero, 2014), IB/P/B-0485 (Myrcha et al., 2002; Jadwiszczak, 2015), IB/P/B-0331, IB/P/B-0578, IB/P/B-0250a (Jadwiszczak, 2006a), MLP 94-II-15-175 1 (K158), 1 (CHb50), 0/1 (K160), 2 (This study 203), 0/1 (K144), 2 (K144/CHa188), 0 (K145), 1 (C155), 1 (C157), 0 (C158), 1 (KC175), 0 (KC176), 1 (KC187), 2 (BG135), 0 (BG136), 1 (C169), 0/1 (This study 266), 1 (C132), 3 (CL220)
Palaeeudyptes marplesi OM C.50.28 (Simpson, 1971b) 0 (This study 266), 1 (K158), 2 (CHb47)
Palaeospheniscus bergi NHMUK A694 (Jadwiszczak, 2015), P. planus MACN (unnumbered) (Ameghino, 1905: plate 1, 2, figure 7), Paraspheniscus (Ameghino, 1905: pl. 2, fig. 12) 1 (K158), 1 (M247), 0/1 (CHb50)
Palaeospheniscus biloculata Perispheniscus wimani (Ameghino, 1905: plate 2, 3, figure 14, 15), supplemented by descriptions from Acosta Hospitaleche (2007) and Acosta Hospitaleche and Tambussi (2008) 2 (CHb50)
Palaeospheniscus patagonicus AMNH No. 3297 (Simpson, 1946), MPEF-PV 3060, MPEF-PV 3070 (Acosta Hospitaleche et al., 2008) 1 (K158), 2 (This study 203), 2 (This study 266), 1 (M246), 1 (M247), 2 (CHb17), 0 (CHb50), 2 (BG128)
Paraptenodytes antarcticus AMNH 3338 (Bertelli et al., 2006) 2 (K141), 1 (K158), 0 (This study 266)
Paraptenodytes brodkorbi plate 5, figure 29a and b (Ameghino, 1905) 1 (C132)
Paraptenodytes robustus BM(NH) A/151 (Simpson, 1972) 1 (CL222), 1 (CHa157), 1 (C132), 1 (CHb7)
Pelecanoides urinatrix   1 (K158), 0 (This study 266), 3 (CHb50), 1 (BG141), 1 (BG127)
Pelecanus conspicillatus CM AV37035  
Perudyptes devriesi MUSM 889 (Ksepka and Clarke, 2010) 1 (K141), 1 (This study 266), ? (K163), 0 (K141), 1 (CL222), 2 (CHa233)
Phaethon rubricauda NMV B12819 Coded in entirety, see NEXUS file
Phalacrocorax carbo CM AV9775, CM AV19114, CM AV9774  
Phoebastria immutabilis   0 (A72), 0 (K158), 1 (This study 266), 0 (CHb50), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 3 (BG126), 0 (CL220), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Phoebetria palpebrata   0 (A72), 0 (K158), 1 (This study 266), 0 (CHb50), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 3 (BG126), 0 (CL220), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Phoeicopterus sp. CM not registered  
Platydyptes amiesi OM C.50.61, OM C.50.62 (Simpson, 1971b; Ando, 2007) 1 (M247), 1 (KF239), 1 (K141), 2 (CL222), 1 (CHb17), 1 (CL219), 0 (C143), 0 (CHb31), 1 (KC166)
Platydyptes marplesi OM C.47.15 (Marples, 1952; Ando, 2007), OU 21946 (from Ando, 2007; used as per Chávez Hoffmeister, 2014b) Note: Ando (2007) considered the holotype of Duntroonornis parvus (OM C.47.31) to be synonomous with this taxon. However, because this study has not been published, this specimen has not been formally synonomised with P. marplesi and is referred to as Duntroonornis parvus here. 2 (This study 203), 1 (M246), 1 (M247), 1 (KF239), 0 (KC142), 0 (CHb7), 0 (KT153), 0 (CHb31), 2 (A34), 1 (C155), 0 (CHb44), 0 (CHb47), ? (KF243), ? CHa219), 2 (CHa233), 0 (CHb71), 1 (LZ2366), 0/2 (CHa234)
Platydyptes novaezealandiae DM 1451/OU 21797 (Simpson, 1971b; Ando, 2007), OU 21805 (from Ando, 2007; used as per Chávez Hoffmeister, 2014b) 2 (This study 203), 2 (K158), 1 (M246), 1 (M247), ? (CL222), ? (K133), ? (CHb20), 1 (CL219), ? (CHb31), ? (BG128), 0 (CHb44), 0/1 (CHb47), 0 (CHb50), 1 (KT203), 1 (CHb72)
Podiceps crisatus CM AV38913, CM AV10285, CM AV36143, CM AV36812  
Procellaria cinerea   0 (A72), 1 (K158), 0 (This study 266), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 3 (BG126), 0 (CL220), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Pseudaptenodytes macraei NMV P 26668, NMV P27055, NMV P27056 (Simpson, 1970; Park, 2014) 1 (BG121), 2 (BG122), 2 (CHb3), 2 (C132), 0 (CHa157), 2 (K127), 2 (CL222), 2 (K129), 1 (CHb16), 2 (K133), 2 (CHb20), 1 (C143), 0 (CHa177), 0 (K160), 1 (CHb7), 2 (CHb8), 2 (CHb17), 1/2 BG125), 1 (K134), 3 (CL220), 0 (C144), 1 (M247), 1 (C155), 0 (C156), 1 (C157), 1 (KC175), 0 (KC176), 0/1 (K137)
Pygoscelis adeliae USNM 554802; Unassigned (from Jadwiszczak, 2015), CM not registered, CM not registered 2 (CHb50), 2 (K158), 1 (This study 266), 0 (A72), 0 (CHb49), 0 (BG141), 0 (CHb47), 0/1 (CHb64), 2 (CHb45), 2 (K163), 0 (CHb71), 0 (CHb72), 0 (KT211), 0/1 (CHb46), 1 (CHb45), 0 (CHb44), 1 (CHb43), 3 (BG127), 2 (CHb37), 2 (K141), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122), 2 (CHb17)
Pygoscelis antarcticus   2 (CHa233), 0 (A72), 2 (K158), 0 (This study 266), 2 (CHb50), 0 (CHb49), 0 (BG141), 1 (CHb47), 0/1 (CHb64), 2 (CHb65), 2 (K163), 1 (CHb71), 0 (KT211), 1 (CHb46), 0 (CHb45), 1 (CHb43), 0 (CHb42), 3 (BG127), 2 (CHb37), 2 (K141), 0 (BG126), 3 (K133), 2 (CHb17), 1 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Pygoscelis grandis SGO-PV-1104, SGOPV-1105, SGOPV-1106, SGOPV-1107, SGOPV-1108 (Walsh and Suárez, 2006) 2 (K158), 1 (This study 266), 0 (A72), 2 (CHb50), 0 (CHb49), 0 (BG141), 0 (CHb47), 0 (CHb64), 2 (CHb65), 2 (K163), 0/1 (CHb71), 0 (CHb72), 1 (CHb45), 1 (KC137), 0 (A22), 0 (K122), 2 (BG122), 2 (CHa157), 2 (CL217), 1 (KF235), 2 (CHb8), 2 (CL222), 1 (CHb16), ? (CL220), 1 (CHb31), 0 (BG126), 0 (BG128), 2 (K141), 2 (K142), 2 (CHb37), 3 (BG127), 2 (This study 203), 1 (AH38), 1 (AH37), 0 (CHb42), 2 (CHb43), 0 (CHb44), 1 (CHb46), 2/3 (K159), 0 (KT211), 0 (LZ2366), 2 (K127), 2 (K129), 0 (K135), 2 (CHb17), 0 (CHb39), 2 (K143), 0 (K145), 0 (KC187), 1 (BG135), 0 (KF242), 0/1 (CHa219), 0 (CHb61), 2/3 (CHa233), 1 (A73)
Pygoscelis papua CM 1992-224, CM 1993-90 0 (This study 266)
SAM P 7158 cf. Palaeeudyptes SAM P 7158 (Simpson, 1957; Park and Fitzgerald, 2012) 1 (M247), 0 (K142), 0 (K141), 1 (BG128), 1 (BG126), 0 (CHb31), 0 (CHa177), 1 (CHa176), 0 (K134), 1 (CHb20), 2 (K133), 1 (K129), 0 (K127), 0 (CHb8), 1 (CHb3), 2 (BG122), 1 (BG121), 2 (CHb37), 1 (CHb17), 1 (CHb16), 0 (K135), 1 (CL222), 0 (CHb7), 1/2 (CL222), 0/1 (K137), 3 (BG127), 0 (K143)
Sequiwaimanu rosieae CM 2016.6.1 2 (K141), 1 (This study 203), 1/2 (K144/CHa188), 0 (K144), 2 (BG122), 1 (AH37), 0 (KF239), 0 (K143), 0 (CHb39), 3 (BG127), 2 (CHb37), 0 (K142), 0 (A34), 2 (BG128), 1 (CHb31), 0 (CHa177), 0 (CHa176), 1 (CHb20), 1 (CHb17), 0 (CHb16), 1 (KT153), 1 (CL222), 0 (CHb8), 1 (CHb7), 1 (CHa157), 1 (CHb3), 0 (C132)
Sphenisciformes indet. NMV P221273 NMV P221273 (Park et al., 2016) 1 (CHa177), 1 (M247), 3 (CHb37), 2 (K142), 1 (BG128), 0 (BG126), 1 (CHb31), 3 (CHa176), 1 (C143), 3 (CL220), 1 (CHb20), 2 (K133), 1 (CHb16), 0 (K135), 2 (K129), 2 (CL222), 2 (K127), 2 (CHb8), 0 (CHa157), 1 (C132), 2 (CHb3), 1 (BG122), 1 (BG121), 1 (CL222), 0 (CHb7), 2 (C132), 1 (CHb7), 2 (CL222), 2 (CHb17), 1/2 (CHb20), 1 (A34), 2 (K141), 0 (CHb39), 1 (K143)
Sphenisciformes indet. SAM P 10863 SAM P 10863 (Simpson, 1957; Park and Fitzgerald, 2012) 0 (CHa177), 0 (K137), 3 (CL220), 1 (CL219), 1 (K134), 1 (CHb20), 2 (K133), 2 (CL222), 0 (K127), 0 (CHb8), 1 (CHa157), 0 (C132), 1 (CHb3), 2 (BG122), 1 (BG121), 1 (M247), 1 (CHb17), 1 (CHb16), 0 (K135), 1 (CHb7), 1 (CHb3), 0 (K128), 1 (K129), ? (K134)
Spheniscus demersus FUR 209 0 (A72), 2 (CHa229), 2 (K158), 1/2 (This study 266), 2 (CHb50), 0 (CHb49), 0 (BG141), 2 (CHb65), 2 (K163), 0 (CHb72), 1 (KT211), 1 (CHb46), 1 (CHb45), 1 (CHb44), 1 (CHb43), 1 (CHb42), 3 (BG127), 2 (CHb37), 1 (K141), 0 (BG126), 3 (CL220), 3 (K133), 2 (CHb17), 0 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Spheniscus humboldti CM 1993-91, CM 1994-31, CM 1997-113, NHMUK 1998.12.8 1 (This study 266), 2 (CHa229), 1 (CHb39)
Spheniscus magellanicus NHMUK 2001.45.1 (Jadwiszczak, 2015) 2 (CHb50), 2 (K158), 0 (A72), 1/2 (This study 266), 0 (CHb49), 0 (BG141), 2 (CHb65), 2 (K163), 0 (CHb72), 1 (KT211), 1 (LZ2366), 0/1 (CHb46), 1 (CHb45), 1 (CHb43), 0 (CHb42), 1 (CHb39), 3 (BG127), 2 (CHb37), 0 (BG126), 3 (CL220), 3 (K133), 2 (CHb17), 0 (CHb16), 2 (CL222), 2 (CHb8), 1 (CHb7), 2 (CHb3), 2 (BG122)
Spheniscus megaramphus MUSM 2087 (Chávez Hoffmeister, 2014a) 0 (A72), 0 (K157), 0 (CHb49), 0 (BG141), 2 (CHb47), 1 (B139), 0 (K157), 2 (CHb64), 2 (CHb65), 3 (K159), 2 (K163), 1 (K160), 1 (CHb71), 0 (CHb72), 1 (A73), 1 (LZ2366), 1 (CHb46), 1 (CHb45), 1 (KT211), 1 (CHb44)
Spheniscus mendiculus   0 (BG141), 1 (CHb45), 0 (BG126), 3 (CL220), 2 (BG122)
Spheniscus muizoni MNHN PP1 147d (Göhlich, 2007) 2 (This study 203), 0 (A72), 0 (This study 266), 1/2 (CHa229), 2 (CHb50), 0 (CHb49), 0 (BG141), 2 (CHb47), 2 (CHb64), 2 (CHb65), 0 (CHb72), 1 (CHb45), 0/1 (CHb44), 1 (M246), 1 (KF239), 3 (BG127), 2 (CHb37), 1 (K141), 0 (BG126), 3 (CL220), 2 (CHb20), 3 (K133), 1 (CHb16), 2 (CL222), 1 (CHb7), 2 (CHb3), 2 (BG122)
Spheniscus urbinai MUSM 898, MUSM 401 (Chávez Hoffmeister, 2014a) 1 (K141), 2 (This study 203), 0 (A72), 0 (CHb49), 0 (BG141), 2 (CHb47), 2 (CHb64), 2 (CHb65), 2 (K163), 1 (CHb71), 0 (CHb72), 0 (KT211), 0/1 (A73), 0 (LZ2366), 1 (CHb46), 1 (CHb45), 1 (CHb44), 0 (BG126), 3 (CL220), 2 (CHb17), 1 (CHb16), 2 (CHb8), 2 (BG122)
Thalassarche cauta CM AV14476, CM AV36796, CM AV14738, CM AV22627  
Thalassarche melanophris   0 (A72), 0 (K158), 0 (This study 266), 0 (CHb50), 1 (BG141), 0 (K163), 0 (CHb45), 0 (BG127), 3 (K141), 3 (BG126), 0 (CL220), 0 (K133), 0 (CHb17), 0 (CL222), 0 (CHb8), 0 (CHb3), 0 (BG122)
Waimanu manneringi CM zfa 35 0 (This study 266), 0 (CHa234), 1 (BG138), 1 (AH37)
Waipara Greensand Giant penguin CM 2016.158.1 1 (This study 266)

Two NEXUS files are available with additional supplementary material for this paper. They are available in a zipped file.

logo smallPalaeontologia Electronica
Webmaster
1998–2020
23 years of electronic palaeontology

PE is archived by CLOCKSS and LOCKSS programs.