SEARCH SEARCH

Article Search

TABLE 1. Extinct and extant taxa, along with the specimens used to create the profile-skeletal restorations in this study (Figure 1). Some restorations were supplemented with additional specimens to enhance accuracy, either due to better-preserved skeletal parts or missing elements in the primary specimen. Note that Hydrodamalis gigas exhibited skeletons, are generally composites assembled from bones found on shorelines after their extinction (Mattoli and Domming, 2006). This can be observed in the irregular sizing of the vertebrae and ribs within and between most specimens. The Aleutian sea cow had a small head according to UZMH 710, the skulls attached to the composites are overly large portions of complete body length, with USNM 21966 being the least errant in this regard.

Taxon Main specimen Additional specimens
Perucetus colossus MUSM 3248 -
Basilosaurus cetoides USNM 4675 USNM 4674 and USNM 12261
Cynthiacetus peruvianus MNHN.F.PRU10 -
Balaenoptera musculus LML GOGA 1982 NHMUK 1892.3.1.1
Balaenoptera physalus MSC Bp.140400 MCNB MZB 83-3084
Physeter macrocephalus SCF Pm.141204 SMNKNU 7653
Eubalaena glacialis ZMVC CN2 -
Dugong dugon LDUCZ Z33 I -
Trichechus manatus NHMUP C-1442 -
Hydrodamalis gigas UZMH 710 MNHN 14516, NHMW 614, SMNKU 7628 and USNM 21966

 

 

TABLE 2. Mass estimates of extant and extinct aquatic mammals at model length of 100 units and in absolute lengths, based on rigorous volumetric models in Figure 1 and Figure 2. The volume estimates have been obtained through graphic double integration (GDI) and water displacement (WD). The masses are presented as k values and absolute terms (tonnes). To determine the body mass in kilograms for a specific specimen, one should multiply the k value herein by the length in meters cubed. SG, specific gravity, equals the density of the ocean, which is essential for achieving neutral buoyancy in marine animals (see Larramendi et al., 2021). Note that Perucetus colossus option 1 assumes typical cetacean-like soft tissue, whereas option 2 assumes sirenian-like.

Taxon Length Volume
(GDI)
Volume
(WD)
SG Mass k1
(GDI)
Mass
k
2 (WD)
Mean mass
k3
Body
length
Absolute
mean mass
Perucetus colossus
I MUSM 3248
100 9.01 9.48 1.025 9.24 9.72 9.48 15.7 m 36.7 t
Perucetus colossus
II MUSM 3248
100 10.08 10.33 1.025 10.33 10.59 10.46 15.7 m 40. 5 t
Cynthiacetus peruvianus
MNHN.F.PRU10
100 5.45 5.68 1.025 5.59 5.82 5.70 8.95 m 4.1 t
Balaenoptera musculus
LML GOGA 1982
100 7.42 7.48 1.025 7.61 7.67 7.64 27 m 150.4 t
Balaenoptera physalus
MSC Bp.140400
100 6.33 6.62 1.025 6.49 6.79 6.64 20 m 53.1 t
Physeter macrocephalus
SCF Pm.141204
100 12.68 12.92 1.025 13.0 13.24 13.12 16.5 m 58.9 t
Eubalaena glacialis
ZMVC CN2
100 19.51 20.45 1.025 20.0 20.96 20.48 14.3 m 59.9 t
Dugong dugon
LDUCZ Z33 I
100 20.33 20.39 1.025 20.84 20.9 20.87 2.7 m 0.41 t
Trichechus manatus
NHMUP C-1442
100 22.25 22.82 1.025 22.81 23.39 23.10 3.1 m 0.69 t
Hydrodamalis gigas
UZMH 710
100 18.54 19.12 1.025 19.0 19.6 19.3 5.5 m 3.2 t

 

 

TABLE 3. Perucetus colossus skeleton mass estimation. Dry bone tissue is assumed a water loss of 25.5% as observed in living vertebrates (Appendix 1). Skeletal volume and bone compactness from Bianucci et al. (2023). Volume in liters and mass in kilograms.

Conservative estimation
  Volume Bone
compactness
Bone tissue
fresh
Bone tissue
dry
Dry bone
SG
Dry bone
tissue mass
Vertebrae 2270 0.877 1991 1483 2.26 3352
Ribcage 543.00 0.955 519 386 2.26 873
Skull 88.00 0.491 43 32 2.26 73
Limbs 15.60 0.955 15 11 2.26 25
Total 2917 - 2567 1913 - 4323
Maximum estimation
Vertebrae 2720 0.877 2385 1777 2.26 4016
Ribcage 1270 0.955 1213 904 2.26 2042
Skull 88 0.491 43 32 2.26 73
Limbs 16 0.955 15 11 2.26 25
Total 4094 - 3656 2724 - 6156