Article Search

967 toc

A New Eocene Crab Species

Jaleigh Pier



A recent article published in Palaeontologia Electronica (PE) highlights a discovery of a new species of fossilized crab from the Middle Eocene (47-41 million years ago) of Spain. Kromtitis is a well-known genus of Eocene crab that has a rather ornate shell carapace with examples from Italy, Hungary, Austria, Denmark and even the Neogene of Jamaica. This finding however is the first for the Iberian Peninsula.

953 tocAncient Trophic Interactions

Jaleigh Pier



Panama, the land bridge connecting the north and south American continents is known for its lush forests and tropical waters. This ideal central location between continents allowed two evolutionarily distinct wave populations of plants and animals to crash into each other creating a mixing pot of evolution. These novel interactions over the last ~10 million years has made Panama the lush green biodiversity hotspot we know today.

However, if we rewind to the Pliocene (5.3-2.58 million years ago) the land bridge was still developing. The region was sprinkled with islands separated by a warm shallow sea with a very thin isthmus, “ideal for marine megafauna, where whales, fishes, and abundant benthic invertebrates thrived” says Dirley Cortés.

Dirley Cortés is a researcher studying marine paleoecology of the Early Cretaceous, but also has fieldwork experience in the Panamanian region. It was these fieldwork connections that led to a recent discovery of whale remains which reveal interesting signs of shark predation.

897 tocA fossil beaked whale from Hokkaido, Japan

Kaylene Butler


Beaked whales (Family: Ziphiidae) are part of an easily recognised family of toothed whales known for their elongated beaks. Fossil evidence for beaked whales dates back as far as the Miocene (15 million years ago). Despite a singficant increase in our knowledge of beaked whale evolution, the evolution of their ear bone (periotic) shape in particular is poorly understood. Among the fossil beaked whale, preserved ear bones are rare compared to skulls. However, recently, Yoshihiro Tanaka and his colleagues described a beaked whale fossil! The fossil, described from the Chepotsunai Formation of Hokkaido, Japan was designated TTM-1 includes preserved ear bones, isolated teeth and vertebrate.

900 tocThe forelimbs of Dilophosaurus: What can they tell us about an iconic dinosaur?

Kaylene Butler


Dilophosaurus wetherilli is an iconic carnivorous dinosaur. This bipedal theropod (characterized by hollow bones and birdlike hindlimbs) dinosaur from the Lower Jurassic Period (201.3 million years ago - 174.1 million years ago) is known for the thin-boned crests on its snout. Dilophosaurus, over 6 m long, is from the Kayenta Formation of Arizona. As with all extinct animals, in order to understand how Dilophosaurus wetherilli lived, palaeontologists must study the relationships between the structure and function of the animal. The study of this relationship is called “functional morphology”. Recently, a PE paper by Philip J. Senter and Corwin Sullivan provided some interesting insight into the behaviour of this dinosaur by studying the range of motion of Dilophosaurus’ forelimbs.

831 tocThe Strange Teeth of the Carboniferous Shark Edestus

Jaleigh Pier


Sharks have been popularized in the media for decades, from the famous Jaws film of the 1970s, to more modern Megalodon movies, and even an annual dedicated Shark Week on the Discovery Channel. Humans have become wary of these creatures portrayed as man-eating machines and, honestly, giant jaws lined with rows upon rows of teeth do not sound like a particularly pleasant encounter.

Sharks are some of the oldest vertebrates on the planet, having existed more than 450 million years! Arguably some of the most intriguing examples of specialized shark evolution come from the late Paleozoic (358-251 million years ago).

955 tocWhen Slow Evolution is the Best Survival Tactic

Jaleigh Pier



Fossils often indicate what environmental conditions were like at different times in earth’s history. As climates change over time, so does life since certain characteristics are more beneficial in specific climates. For example, crocodile fossils from the Eocene of Antarctica indicate a warm temperate climate ~50 million years ago. Both physical characteristics and behavior make crocs much more suitable to a lush green Antarctica rather than the current frozen over tundra. But what about species able to withstand various climate shifts over several million years, yet physically remains mostly unchanged?

947 tocUnlocking the secrets of the thylacine: The skeletal atlas of an iconic marsupial

Kaylene Butler


The thylacine (Thylacinus cynocephalus), sometimes referred to as a Tasmanian tiger (due to the striped pattern on its back) or the Tasmania wolf (due to the dog like appearance), is one of Australia’s most iconic extinct mammals. Thylacines are thought to have gone extinct in the wild by the 1930s, with the last surviving captive animal having died in 1936. This was due, to a mass-extermination of the thylacines across Tasmania. Sadly, despite their now iconic nature and more recent public interest, very few useful specimens exist in collections and a complete atlas of the skeleton of the Thylacine has never been published. This is where a recent PE paper by Natalie M. Warburton, Kenny J. Travouillon, and Aaron B. Camens comes into play.

890 tocIntroducing Meeksiella pskovensis: an impeccably preserved Ptytodont

Kaylene Butler


Ptyctodonts are an extinct group of armoured fishes (placoderms) which are common in Middle to Late Devonian aged rocks . Unlike other armoured placoderms, ptyctodonts had reduced body armour, large eyes and a long whip like tail. Unfortunately, the group is known mostly from fossil tooth plates. Body fossil are rare and articulated specimens showing three-dimensional preservation are even rarer. Recently a new genus and species of ptyctodont was described in Palaeontologia Electronica by Kate Trinajstic, John A. Long, Alexander O. Ivanov, and Elga Mark-Kurik. Although occurring as isolated plates, this fossil showed 3D preservation allowing the fish to be accurately reconstructed.

905 toc 

Treasures from Eocene Baltic Amber

Jaleigh Pier


There has been a treasure trove of insect findings from Eocene Baltic amber, but what makes this amber so efficient at preserving insects and what can we learn from these ancient creatures?

Dr. Andris Bukejs is an expert on beetles (Coleoptera) from Eocene Baltic amber.

“Forests were very extensive in the Eocene of the Baltic and evidently the conditions of sedimentation and preservation were excellent” says Dr. Bukejs.

Amber forms from hardened tree sap; the sticky stuff covering pine trees and what can be sometimes collected and boiled down into syrup. The sticky properties of this fluid are ideal for trapping and enveloping insects, often preserving them in their natural state. The sap that created Baltic amber was produced by Pinus succinifera, a pine tree that along with oak, dominated forests of Northern and Central Europe.

868 toc

Scotland’s Silurian Fauna and the Importance of Taxonomic Revision

Kaylene Butler


There is a recurrent question asked of palaeontologists: “If someone already wrote a paper about it then why do you need to review it again?” However, the up to date information resulting from revision of previous taxonomic descriptions from previously published work is often crucial for further research. Taxonomy (the science of the classification of organisms) and taxonomic revision (where scientists reassess the scientific names of an organism) underpins the vast majority of palaeogeographic or palaeoenvironmental investigations.  A recent paper published in PE by Dr Yves Candela and William R.B. Crighton demonstrates this by reviewing a collection of described nearly 41 years ago (1978) from the North Esk Inlier in the Pentland Hills, Scotland.

logo smallPalaeontologia Electronica
24 years of electronic palaeontology

PE is archived by CLOCKSS and LOCKSS programs.